def test_ang_momentum():
    r""" Test for Angular Momentum Function
    """

    r_vector = [1, 2, 3]
    v_vector = [4, 5, 6]
    actual_out = RV2COE.ang_momentum(r_vector, v_vector)
    expected_out = [-3, 6, -3]

    np.testing.assert_allclose(actual_out, expected_out)
        Line_0 = ['Line {}\n\t{}\n'.format(count+1,line)]

        r_i = float(line[0])
        r_j = float(line[1])
        r_k = float(line[2])
        v_i = float(line[3])
        v_j = float(line[4])
        v_k = float(line[5])

        r_input = [r_i, r_j, r_k]
        v_input = [v_i, v_j, v_k]

        Line_1 = ("The mu Constant: \n\t", str(mu), "\n", 'Radius {} (km)\n\t{}\n'.format(count+1,r_input))
        Line_2 = ('Velocity {} (km/s)\n\t{}\n'.format(count+1,v_input))
        r"""Inner Workings, Pulling outside functions"""
        h_input = RV2COE.ang_momentum(r_input, v_input)

        e_vector = RV2COE.eccentricity(mu, r_input, v_input, h_input)

        n_vector = RV2COE.line_of_nodes(RV2COE.unit_vector(h_input))

        p = RV2COE.semi_latus_rectum(mu, h_input)

        theta = RV2COE.true_anom(r_input, h_input, e_vector)

        i = RV2COE.inclination(RV2COE.unit_vector(h_input))

        a = RV2COE.semi_major_axis(p, np.linalg.norm(e_vector))

        raan = RV2COE.R_A_A_N(n_vector)