def load_astro_dataset(): """ The BUPA dataset can be obtained from http://www.cs.huji.ac.il/~shais/datasets/ClassificationDatasets.html See description of this dataset at http://www.cs.huji.ac.il/~shais/datasets/bupa/bupa.names """ quasars = fetch_dr7_quasar() stars = fetch_sdss_sspp() quasars = quasars[::5] stars = stars[::5] Nqso = len(quasars) #print 'Numero quasars: ',Nqso Nstars = len(stars) #print 'Numero estrellas: ',Nstars X = empty((Nqso + Nstars, 4), dtype=float) X[:Nqso, 0] = quasars['mag_u'] - quasars['mag_g'] X[:Nqso, 1] = quasars['mag_g'] - quasars['mag_r'] X[:Nqso, 2] = quasars['mag_r'] - quasars['mag_i'] X[:Nqso, 3] = quasars['mag_i'] - quasars['mag_z'] X[Nqso:, 0] = stars['upsf'] - stars['gpsf'] X[Nqso:, 1] = stars['gpsf'] - stars['rpsf'] X[Nqso:, 2] = stars['rpsf'] - stars['ipsf'] X[Nqso:, 3] = stars['ipsf'] - stars['zpsf'] y = zeros(Nqso + Nstars, dtype=int) y[:Nqso] = 1 y[y == 0] = -1 #print 'Salida', y stars = map(tuple, stars) quasars = map(tuple, quasars) stars = array(stars) quasars = array(quasars) #print "Tamano Astro: ", len(X) return X, y
# -*- coding: utf-8 -*- """ Created on Tue Aug 7 15:30:22 2018 @author: zyv57124 """ import numpy as np from astroML.datasets import fetch_LINEAR_geneva from astroML.datasets import fetch_dr7_quasar from astroML.datasets import fetch_sdss_sspp quasars = fetch_dr7_quasar() stars = fetch_sdss_sspp() np.save('quasars.npy', quasars) np.save('stars.npy', stars)
#---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch data and split into training and test samples from astroML.datasets import fetch_dr7_quasar from astroML.datasets import fetch_sdss_sspp quasars = fetch_dr7_quasar() stars = fetch_sdss_sspp() # Truncate data for speed quasars = quasars[::5] stars = stars[::5] # stack colors into matrix X Nqso = len(quasars) Nstars = len(stars) X = np.empty((Nqso + Nstars, 4), dtype=float) X[:Nqso, 0] = quasars['mag_u'] - quasars['mag_g'] X[:Nqso, 1] = quasars['mag_g'] - quasars['mag_r'] X[:Nqso, 2] = quasars['mag_r'] - quasars['mag_i'] X[:Nqso, 3] = quasars['mag_i'] - quasars['mag_z']
SDSS Data Release 7 Quasar catalog ---------------------------------- This demonstrates how to fetch and visualize the colors from the SDSS DR7 quasar sample. """ # Author: Jake VanderPlas <*****@*****.**> # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np from matplotlib import pyplot as plt from astroML.plotting import MultiAxes from astroML.datasets import fetch_dr7_quasar data = fetch_dr7_quasar() colors = np.empty((len(data), 5)) colors[:, 0] = data['mag_u'] - data['mag_g'] colors[:, 1] = data['mag_g'] - data['mag_r'] colors[:, 2] = data['mag_r'] - data['mag_i'] colors[:, 3] = data['mag_i'] - data['mag_z'] colors[:, 4] = data['mag_z'] - data['mag_J'] labels = ['u-g', 'g-r', 'r-i', 'i-z', 'z-J'] bins = [ np.linspace(-0.4, 1.0, 100), np.linspace(-0.4, 1.0, 100), np.linspace(-0.3, 0.6, 100),
# To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from matplotlib import pyplot as plt from astroML.datasets import fetch_dr7_quasar #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch the quasar data data = fetch_dr7_quasar() # select the first 10000 points data = data[:10000] r = data['mag_r'] i = data['mag_i'] z = data['redshift'] #------------------------------------------------------------ # Plot the quasar data fig, ax = plt.subplots(figsize=(5, 3.75)) ax.plot(z, r - i, marker='.', markersize=2, linestyle='none', color='black') ax.set_xlim(0, 5) ax.set_ylim(-0.5, 1.0)