def test_sigmoid(self): # make sure its the same as tensorflow x = np.array([-1., 2., 3., 4.]) tf_x = tf.nn.sigmoid(tf.convert_to_tensor(x)) astroNN_x = sigmoid(x) npt.assert_array_equal(tf_x.eval(session=get_session()), astroNN_x) # make sure identity transform npt.assert_array_almost_equal(sigmoid_inv(sigmoid(x)), x) # for list # make sure its the same as tensorflow x = [-1., 2., 3., 4.] astroNN_x_list = sigmoid(x) npt.assert_array_equal(astroNN_x_list, astroNN_x) # make sure identity transform npt.assert_array_almost_equal(sigmoid_inv(sigmoid(x)), x) # for float # make sure its the same as tensorflow x = 0. astroNN_x = sigmoid(x) npt.assert_array_equal(0.5, astroNN_x) # make sure identity transform npt.assert_array_almost_equal(sigmoid_inv(sigmoid(x)), x)
def test_sigmoid(self): # make sure its the same as tensorflow x = np.array([-1., 2., 3., 4.]) astroNN_x = sigmoid(x) with tf.device("/cpu:0"), context.eager_mode(): tf_x = tf.nn.sigmoid(tf.convert_to_tensor(x)) npt.assert_array_equal(tf_x.numpy(), astroNN_x) # make sure identity transform npt.assert_array_almost_equal(sigmoid_inv(sigmoid(x)), x) # for list # make sure its the same as tensorflow x = [-1., 2., 3., 4.] astroNN_x_list = sigmoid(x) npt.assert_array_equal(astroNN_x_list, astroNN_x) # make sure identity transform npt.assert_array_almost_equal(sigmoid_inv(sigmoid(x)), x) # for float # make sure its the same as tensorflow x = 0. astroNN_x = sigmoid(x) npt.assert_array_equal(0.5, astroNN_x) # make sure identity transform npt.assert_array_almost_equal(sigmoid_inv(sigmoid(x)), x)
def test(self, input_data, inputs_err=None): """ Test model, High performance version designed for fast variational inference on GPU :param input_data: Data to be inferred with neural network :type input_data: ndarray :param inputs_err: Error for input_data, same shape with input_data. :type inputs_err: Union([NoneType, ndarray]) :return: prediction and prediction uncertainty :History: | 2018-Jan-06 - Written - Henry Leung (University of Toronto) | 2018-Apr-12 - Updated - Henry Leung (University of Toronto) """ self.has_model_check() if gpu_availability() is False and self.mc_num > 25: warnings.warn( f'You are using CPU version Tensorflow, doing {self.mc_num} times Monte Carlo Inference can ' f'potentially be very slow! \n ' f'A possible fix is to decrease the mc_num parameter of the model to do less MC Inference \n' f'This is just a warning, and will not shown if mc_num < 25 on CPU' ) if self.mc_num < 2: raise AttributeError("mc_num cannot be smaller than 2") self.pre_testing_checklist_master() input_data = np.atleast_2d(input_data) if self.input_normalizer is not None: input_array = self.input_normalizer.normalize(input_data, calc=False) else: # Prevent shallow copy issue input_array = np.array(input_data) input_array -= self.input_mean input_array /= self.input_std # if no error array then just zeros if inputs_err is None: inputs_err = np.zeros_like(input_data) else: inputs_err = np.atleast_2d(inputs_err) inputs_err /= self.input_std total_test_num = input_data.shape[0] # Number of testing data # for number of training data smaller than batch_size if total_test_num < self.batch_size: batch_size = total_test_num else: batch_size = self.batch_size # Due to the nature of how generator works, no overlapped prediction data_gen_shape = (total_test_num // batch_size) * batch_size remainder_shape = total_test_num - data_gen_shape # Remainder from generator start_time = time.time() print("Starting Dropout Variational Inference") # Data Generator for prediction prediction_generator = BayesianCNNPredDataGenerator( batch_size=batch_size, shuffle=False, steps_per_epoch=data_gen_shape // batch_size, data=[input_array[:data_gen_shape], inputs_err[:data_gen_shape]]) new = FastMCInference(self.mc_num)(self.keras_model_predict) result = np.asarray(new.predict_generator(prediction_generator)) if remainder_shape != 0: # deal with remainder remainder_generator = BayesianCNNPredDataGenerator( batch_size=remainder_shape, shuffle=False, steps_per_epoch=1, data=[ input_array[data_gen_shape:], inputs_err[data_gen_shape:] ]) remainder_result = np.asarray( new.predict_generator(remainder_generator)) if remainder_shape == 1: remainder_result = np.expand_dims(remainder_result, axis=0) result = np.concatenate((result, remainder_result)) # in case only 1 test data point, in such case we need to add a dimension if result.ndim < 3 and batch_size == 1: result = np.expand_dims(result, axis=0) half_first_dim = result.shape[ 1] // 2 # result.shape[1] is guarantee an even number, otherwise sth is wrong predictions = result[:, :half_first_dim, 0] # mean prediction mc_dropout_uncertainty = result[:, :half_first_dim, 1] * ( self.labels_std**2) # model uncertainty predictions_var = np.exp(result[:, half_first_dim:, 0]) * ( self.labels_std**2) # predictive uncertainty print( f'Completed Dropout Variational Inference with {self.mc_num} forward passes, ' f'{(time.time() - start_time):.{2}f}s elapsed') if self.labels_normalizer is not None: predictions = self.labels_normalizer.denormalize(predictions) else: predictions *= self.labels_std predictions += self.labels_mean if self.task == 'regression': # Predictive variance pred_var = predictions_var + mc_dropout_uncertainty # epistemic plus aleatoric uncertainty pred_uncertainty = np.sqrt(pred_var) # Convert back to std error # final correction from variance to standard derivation mc_dropout_uncertainty = np.sqrt(mc_dropout_uncertainty) predictive_uncertainty = np.sqrt(predictions_var) elif self.task == 'classification': # we want entropy for classification uncertainty predicted_class = np.argmax(predictions, axis=1) mc_dropout_uncertainty = np.ones_like(predicted_class, dtype=float) predictive_uncertainty = np.ones_like(predicted_class, dtype=float) # center variance predictions_var -= 1. for i in range(predicted_class.shape[0]): all_prediction = np.array(predictions[i, :]) mc_dropout_uncertainty[i] = -np.sum( all_prediction * np.log(all_prediction)) predictive_uncertainty[i] = predictions_var[i, predicted_class[i]] pred_uncertainty = mc_dropout_uncertainty + predictive_uncertainty # We only want the predicted class back predictions = predicted_class elif self.task == 'binary_classification': # we want entropy for classification uncertainty, so need prediction in logits space mc_dropout_uncertainty = -np.sum(predictions * np.log(predictions), axis=0) # need to activate before round to int so that the prediction is always 0 or 1 predictions = np.rint(sigmoid(predictions)) predictive_uncertainty = predictions_var pred_uncertainty = mc_dropout_uncertainty + predictions_var else: raise AttributeError('Unknown Task') return predictions, { 'total': pred_uncertainty, 'model': mc_dropout_uncertainty, 'predictive': predictive_uncertainty }
def predict_dataset(self, file): class BayesianCNNPredDataGeneratorV2(GeneratorMaster): def __init__(self, batch_size, shuffle, steps_per_epoch, manual_reset=False, pbar=None, nn_model=None): super().__init__(batch_size=batch_size, shuffle=shuffle, steps_per_epoch=steps_per_epoch, data=None, manual_reset=manual_reset) self.pbar = pbar # initial idx self.idx_list = self._get_exploration_order(range(len(file))) self.current_idx = 0 self.nn_model = nn_model def _data_generation(self, idx_list_temp): # Generate data inputs = self.nn_model.input_normalizer.normalize( { "input": file[idx_list_temp], "input_err": np.zeros_like(file[idx_list_temp]) }, calc=False) x = self.input_d_checking(inputs, np.arange(len(idx_list_temp))) return x def __getitem__(self, index): x = self._data_generation( self.idx_list[index * self.batch_size:(index + 1) * self.batch_size]) if self.pbar: self.pbar.update(self.batch_size) return x def on_epoch_end(self): # shuffle the list when epoch ends for the next epoch self.idx_list = self._get_exploration_order(range(len(file))) self.has_model_check() if gpu_availability() is False and self.mc_num > 25: warnings.warn( f'You are using CPU version Tensorflow, doing {self.mc_num} times Monte Carlo Inference can ' f'potentially be very slow! \n ' f'A possible fix is to decrease the mc_num parameter of the model to do less MC Inference \n' f'This is just a warning, and will not shown if mc_num < 25 on CPU' ) if self.mc_num < 2: raise AttributeError("mc_num cannot be smaller than 2") total_test_num = len(file) # Number of testing data # for number of training data smaller than batch_size if total_test_num < self.batch_size: batch_size = total_test_num else: batch_size = self.batch_size # Due to the nature of how generator works, no overlapped prediction data_gen_shape = (total_test_num // batch_size) * batch_size remainder_shape = total_test_num - data_gen_shape # Remainder from generator # Data Generator for prediction with tqdm(total=total_test_num, unit="sample") as pbar: pbar.set_postfix({'Monte-Carlo': self.mc_num}) # suppress pfor warning from TF old_level = tf.get_logger().level tf.get_logger().setLevel('ERROR') prediction_generator = BayesianCNNPredDataGeneratorV2( batch_size=batch_size, shuffle=False, steps_per_epoch=data_gen_shape // batch_size, pbar=pbar, nn_model=self) new = FastMCInference(self.mc_num)(self.keras_model_predict) result = np.asarray(new.predict(prediction_generator)) if remainder_shape != 0: # deal with remainder remainder_generator = BayesianCNNPredDataGeneratorV2( batch_size=remainder_shape, shuffle=False, steps_per_epoch=1, pbar=pbar, nn_model=self) remainder_result = np.asarray(new.predict(remainder_generator)) if remainder_shape == 1: remainder_result = np.expand_dims(remainder_result, axis=0) result = np.concatenate((result, remainder_result)) tf.get_logger().setLevel(old_level) # in case only 1 test data point, in such case we need to add a dimension if result.ndim < 3 and batch_size == 1: result = np.expand_dims(result, axis=0) half_first_dim = result.shape[ 1] // 2 # result.shape[1] is guarantee an even number, otherwise sth is wrong predictions = result[:, :half_first_dim, 0] # mean prediction mc_dropout_uncertainty = result[:, :half_first_dim, 1] * ( self.labels_std['output']**2) # model uncertainty predictions_var = np.exp(result[:, half_first_dim:, 0]) * ( self.labels_std['output']**2) # predictive uncertainty if self.labels_normalizer is not None: predictions = self.labels_normalizer.denormalize( list_to_dict([self.keras_model.output_names[0]], predictions)) predictions = predictions['output'] else: predictions *= self.labels_std['output'] predictions += self.labels_mean['output'] if self.task == 'regression': # Predictive variance pred_var = predictions_var + mc_dropout_uncertainty # epistemic plus aleatoric uncertainty pred_uncertainty = np.sqrt(pred_var) # Convert back to std error # final correction from variance to standard derivation mc_dropout_uncertainty = np.sqrt(mc_dropout_uncertainty) predictive_uncertainty = np.sqrt(predictions_var) elif self.task == 'classification': # we want entropy for classification uncertainty predicted_class = np.argmax(predictions, axis=1) mc_dropout_uncertainty = np.ones_like(predicted_class, dtype=float) predictive_uncertainty = np.ones_like(predicted_class, dtype=float) # center variance predictions_var -= 1. for i in range(predicted_class.shape[0]): all_prediction = np.array(predictions[i, :]) mc_dropout_uncertainty[i] = -np.sum( all_prediction * np.log(all_prediction)) predictive_uncertainty[i] = predictions_var[i, predicted_class[i]] pred_uncertainty = mc_dropout_uncertainty + predictive_uncertainty # We only want the predicted class back predictions = predicted_class elif self.task == 'binary_classification': # we want entropy for classification uncertainty, so need prediction in logits space mc_dropout_uncertainty = -np.sum(predictions * np.log(predictions), axis=0) # need to activate before round to int so that the prediction is always 0 or 1 predictions = np.rint(sigmoid(predictions)) predictive_uncertainty = predictions_var pred_uncertainty = mc_dropout_uncertainty + predictions_var else: raise AttributeError('Unknown Task') return predictions, { 'total': pred_uncertainty, 'model': mc_dropout_uncertainty, 'predictive': predictive_uncertainty }