def testLogisticVariance(self):
   with self.cached_session():
     loc = [2.0, 1.5, 1.0]
     scale = 1.5
     expected_variance = stats.logistic.var(loc, scale)
     dist = logistic.Logistic(loc, scale)
     self.assertAllClose(dist.variance().eval(), expected_variance)
 def testLogisticMean(self):
   with self.cached_session():
     loc = [2.0, 1.5, 1.0]
     scale = 1.5
     expected_mean = stats.logistic.mean(loc, scale)
     dist = logistic.Logistic(loc, scale)
     self.assertAllClose(dist.mean().eval(), expected_mean)
 def testReparameterizable(self):
   batch_size = 6
   np_loc = np.array([2.0] * batch_size, dtype=np.float32)
   loc = constant_op.constant(np_loc)
   scale = 1.5
   dist = logistic.Logistic(loc, scale)
   self.assertTrue(
       dist.reparameterization_type == distribution.FULLY_REPARAMETERIZED)
 def testLogisticSample(self):
   with self.cached_session():
     loc = [3.0, 4.0, 2.0]
     scale = 1.0
     dist = logistic.Logistic(loc, scale)
     sample = dist.sample(seed=100)
     self.assertEqual(sample.get_shape(), (3,))
     self.assertAllClose(sample.eval(), [6.22460556, 3.79602098, 2.05084133])
 def testLogisticEntropy(self):
   with self.cached_session():
     batch_size = 3
     np_loc = np.array([2.0] * batch_size, dtype=np.float32)
     loc = constant_op.constant(np_loc)
     scale = 1.5
     expected_entropy = stats.logistic.entropy(np_loc, scale)
     dist = logistic.Logistic(loc, scale)
     self.assertAllClose(dist.entropy().eval(), expected_entropy)
Exemple #6
0
    def __init__(self,
                 temperature,
                 logits=None,
                 probs=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="RelaxedBernoulli"):
        """Construct RelaxedBernoulli distributions.

    Args:
      temperature: An 0-D `Tensor`, representing the temperature
        of a set of RelaxedBernoulli distributions. The temperature should be
        positive.
      logits: An N-D `Tensor` representing the log-odds
        of a positive event. Each entry in the `Tensor` parametrizes
        an independent RelaxedBernoulli distribution where the probability of an
        event is sigmoid(logits). Only one of `logits` or `probs` should be
        passed in.
      probs: An N-D `Tensor` representing the probability of a positive event.
        Each entry in the `Tensor` parameterizes an independent Bernoulli
        distribution. Only one of `logits` or `probs` should be passed in.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: If both `probs` and `logits` are passed, or if neither.
    """
        parameters = dict(locals())
        with ops.name_scope(name, values=[logits, probs, temperature]) as name:
            with ops.control_dependencies(
                [check_ops.assert_positive(temperature
                                           )] if validate_args else []):
                self._temperature = array_ops.identity(temperature,
                                                       name="temperature")
            self._logits, self._probs = distribution_util.get_logits_and_probs(
                logits=logits, probs=probs, validate_args=validate_args)
            super(RelaxedBernoulli,
                  self).__init__(distribution=logistic.Logistic(
                      self._logits / self._temperature,
                      1. / self._temperature,
                      validate_args=validate_args,
                      allow_nan_stats=allow_nan_stats,
                      name=name + "/Logistic"),
                                 bijector=Sigmoid(validate_args=validate_args),
                                 validate_args=validate_args,
                                 name=name)
        self._parameters = parameters
  def testDtype(self):
    loc = constant_op.constant([0.1, 0.4], dtype=dtypes.float32)
    scale = constant_op.constant(1.0, dtype=dtypes.float32)
    dist = logistic.Logistic(loc, scale)
    self.assertEqual(dist.dtype, dtypes.float32)
    self.assertEqual(dist.loc.dtype, dist.scale.dtype)
    self.assertEqual(dist.dtype, dist.sample(5).dtype)
    self.assertEqual(dist.dtype, dist.mode().dtype)
    self.assertEqual(dist.loc.dtype, dist.mean().dtype)
    self.assertEqual(dist.loc.dtype, dist.variance().dtype)
    self.assertEqual(dist.loc.dtype, dist.stddev().dtype)
    self.assertEqual(dist.loc.dtype, dist.entropy().dtype)
    self.assertEqual(dist.loc.dtype, dist.prob(0.2).dtype)
    self.assertEqual(dist.loc.dtype, dist.log_prob(0.2).dtype)

    loc = constant_op.constant([0.1, 0.4], dtype=dtypes.float64)
    scale = constant_op.constant(1.0, dtype=dtypes.float64)
    dist64 = logistic.Logistic(loc, scale)
    self.assertEqual(dist64.dtype, dtypes.float64)
    self.assertEqual(dist64.dtype, dist64.sample(5).dtype)
  def testLogisticSurvivalFunction(self):
    with self.cached_session():
      batch_size = 6
      np_loc = np.array([2.0] * batch_size, dtype=np.float32)
      loc = constant_op.constant(np_loc)
      scale = 1.5

      dist = logistic.Logistic(loc, scale)
      x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float32)
      survival_function = dist.survival_function(x)
      expected_survival_function = stats.logistic.sf(x, np_loc, scale)

      self.assertEqual(survival_function.get_shape(), (6,))
      self.assertAllClose(survival_function.eval(), expected_survival_function)
  def testLogisticLogCDF(self):
    with self.cached_session():
      batch_size = 6
      np_loc = np.array([2.0] * batch_size, dtype=np.float32)
      loc = constant_op.constant(np_loc)
      scale = 1.5

      dist = logistic.Logistic(loc, scale)
      x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float32)
      logcdf = dist.log_cdf(x)
      expected_logcdf = stats.logistic.logcdf(x, np_loc, scale)

      self.assertEqual(logcdf.get_shape(), (6,))
      self.assertAllClose(logcdf.eval(), expected_logcdf)
  def testLogisticLogProb(self):
    with self.cached_session():
      batch_size = 6
      np_loc = np.array([2.0] * batch_size, dtype=np.float32)
      loc = constant_op.constant(np_loc)
      scale = 1.5
      x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float32)
      dist = logistic.Logistic(loc, scale)
      expected_log_prob = stats.logistic.logpdf(x, np_loc, scale)

      log_prob = dist.log_prob(x)
      self.assertEqual(log_prob.get_shape(), (6,))
      self.assertAllClose(log_prob.eval(), expected_log_prob)

      prob = dist.prob(x)
      self.assertEqual(prob.get_shape(), (6,))
      self.assertAllClose(prob.eval(), np.exp(expected_log_prob))