Exemple #1
0
 def test_aliases(self):
     t1 = constant_op.constant(1.0, name='t1')
     t2 = constant_op.constant(2.0, name='t2')
     utils.collect_named_outputs('end_points', 'a1', t1)
     utils.collect_named_outputs('end_points', 'a2', t2)
     self.assertEqual(t1.aliases, ['a1'])
     self.assertEqual(t2.aliases, ['a2'])
Exemple #2
0
 def test_gather_aliases(self):
     t1 = constant_op.constant(1.0, name='t1')
     t2 = constant_op.constant(2.0, name='t2')
     t3 = constant_op.constant(2.0, name='t3')
     utils.collect_named_outputs('end_points', 'a1', t1)
     utils.collect_named_outputs('end_points', 'a2', t2)
     ops.add_to_collection('end_points', t3)
     aliases = utils.gather_tensors_aliases(
         ops.get_collection('end_points'))
     self.assertEqual(aliases, ['a1', 'a2', 't3'])
Exemple #3
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = layers.batch_norm(
        inputs, activation_fn=nn_ops.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = layers_lib.conv2d(
          preact,
          depth, [1, 1],
          stride=stride,
          normalizer_fn=None,
          activation_fn=None,
          scope='shortcut')

    residual = layers_lib.conv2d(
        preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
    residual = resnet_utils.conv2d_same(
        residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
    residual = layers_lib.conv2d(
        residual,
        depth, [1, 1],
        stride=1,
        normalizer_fn=None,
        activation_fn=None,
        scope='conv3')

    output = shortcut + residual

    return utils.collect_named_outputs(outputs_collections, sc.name, output)
Exemple #4
0
 def test_convert_collection_to_dict_clear_collection(self):
     t1 = constant_op.constant(1.0, name='t1')
     t2 = constant_op.constant(2.0, name='t2')
     utils.collect_named_outputs('end_points', 'a1', t1)
     utils.collect_named_outputs('end_points', 'a21', t2)
     utils.collect_named_outputs('end_points', 'a22', t2)
     utils.convert_collection_to_dict('end_points', clear_collection=True)
     self.assertEqual(ops.get_collection('end_points'), [])
Exemple #5
0
 def test_convert_collection_to_dict(self):
     t1 = constant_op.constant(1.0, name='t1')
     t2 = constant_op.constant(2.0, name='t2')
     utils.collect_named_outputs('end_points', 'a1', t1)
     utils.collect_named_outputs('end_points', 'a21', t2)
     utils.collect_named_outputs('end_points', 'a22', t2)
     end_points = utils.convert_collection_to_dict('end_points')
     self.assertEqual(end_points['a1'], t1)
     self.assertEqual(end_points['a21'], t2)
     self.assertEqual(end_points['a22'], t2)
Exemple #6
0
 def test_collect(self):
     t1 = constant_op.constant(1.0, name='t1')
     t2 = constant_op.constant(2.0, name='t2')
     utils.collect_named_outputs('end_points', 'a1', t1)
     utils.collect_named_outputs('end_points', 'a2', t2)
     self.assertEqual(ops.get_collection('end_points'), [t1, t2])
Exemple #7
0
def masked_convolution(inputs,
                       num_outputs,
                       kernel_size,
                       stride=1,
                       padding='SAME',
                       data_format=None,
                       rate=1,
                       activation_fn=nn.relu,
                       normalizer_fn=None,
                       normalizer_params=None,
                       weights_initializer=initializers.xavier_initializer(),
                       weights_regularizer=None,
                       biases_initializer=init_ops.zeros_initializer(),
                       biases_regularizer=None,
                       reuse=None,
                       variables_collections=None,
                       outputs_collections=None,
                       trainable=True,
                       scope=None):
    """Adds an 2D convolution followed by an optional batch_norm layer.
  The layer creates a mask variable on top of the weight variable. The input to
  the convolution operation is the elementwise multiplication of the mask
  variable and the weigh

  It is required that 1 <= N <= 3.

  `convolution` creates a variable called `weights`, representing the
  convolutional kernel, that is convolved (actually cross-correlated) with the
  `inputs` to produce a `Tensor` of activations. If a `normalizer_fn` is
  provided (such as `batch_norm`), it is then applied. Otherwise, if
  `normalizer_fn` is None and a `biases_initializer` is provided then a `biases`
  variable would be created and added the activations. Finally, if
  `activation_fn` is not `None`, it is applied to the activations as well.

  Performs atrous convolution with input stride/dilation rate equal to `rate`
  if a value > 1 for any dimension of `rate` is specified.  In this case
  `stride` values != 1 are not supported.

  Args:
    inputs: A Tensor of rank N+2 of shape
      `[batch_size] + input_spatial_shape + [in_channels]` if data_format does
      not start with "NC" (default), or
      `[batch_size, in_channels] + input_spatial_shape` if data_format starts
      with "NC".
    num_outputs: Integer, the number of output filters.
    kernel_size: A sequence of N positive integers specifying the spatial
      dimensions of the filters.  Can be a single integer to specify the same
      value for all spatial dimensions.
    stride: A sequence of N positive integers specifying the stride at which to
      compute output.  Can be a single integer to specify the same value for all
      spatial dimensions.  Specifying any `stride` value != 1 is incompatible
      with specifying any `rate` value != 1.
    padding: One of `"VALID"` or `"SAME"`.
    data_format: A string or None.  Specifies whether the channel dimension of
      the `input` and output is the last dimension (default, or if `data_format`
      does not start with "NC"), or the second dimension (if `data_format`
      starts with "NC").  For N=1, the valid values are "NWC" (default) and
      "NCW".  For N=2, the valid values are "NHWC" (default) and "NCHW".
      For N=3, the valid values are "NDHWC" (default) and "NCDHW".
    rate: A sequence of N positive integers specifying the dilation rate to use
      for atrous convolution.  Can be a single integer to specify the same
      value for all spatial dimensions.  Specifying any `rate` value != 1 is
      incompatible with specifying any `stride` value != 1.
    activation_fn: Activation function. The default value is a ReLU function.
      Explicitly set it to None to skip it and maintain a linear activation.
    normalizer_fn: Normalization function to use instead of `biases`. If
      `normalizer_fn` is provided then `biases_initializer` and
      `biases_regularizer` are ignored and `biases` are not created nor added.
      default set to None for no normalizer function
    normalizer_params: Normalization function parameters.
    weights_initializer: An initializer for the weights.
    weights_regularizer: Optional regularizer for the weights.
    biases_initializer: An initializer for the biases. If None skip biases.
    biases_regularizer: Optional regularizer for the biases.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional list of collections for all the variables or
      a dictionary containing a different list of collection per variable.
    outputs_collections: Collection to add the outputs.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
    scope: Optional scope for `variable_scope`.

  Returns:
    A tensor representing the output of the operation.

  Raises:
    ValueError: If `data_format` is invalid.
    ValueError: Both 'rate' and `stride` are not uniformly 1.
  """
    if data_format not in [
            None, 'NWC', 'NCW', 'NHWC', 'NCHW', 'NDHWC', 'NCDHW'
    ]:
        raise ValueError('Invalid data_format: %r' % (data_format, ))

    layer_variable_getter = _build_variable_getter({
        'bias': 'biases',
        'kernel': 'weights'
    })

    with variable_scope.variable_scope(
            scope,
            'Conv', [inputs],
            reuse=reuse,
            custom_getter=layer_variable_getter) as sc:
        inputs = ops.convert_to_tensor(inputs)
        input_rank = inputs.get_shape().ndims

        if input_rank == 3:
            raise ValueError(
                'Sparse Convolution not supported for input with rank',
                input_rank)
        elif input_rank == 4:
            layer_class = core.MaskedConv2D
        elif input_rank == 5:
            raise ValueError(
                'Sparse Convolution not supported for input with rank',
                input_rank)
        else:
            raise ValueError(
                'Sparse Convolution not supported for input with rank',
                input_rank)

        if data_format is None or data_format == 'NHWC':
            df = 'channels_last'
        elif data_format == 'NCHW':
            df = 'channels_first'
        else:
            raise ValueError('Unsupported data format', data_format)

        layer = layer_class(filters=num_outputs,
                            kernel_size=kernel_size,
                            strides=stride,
                            padding=padding,
                            data_format=df,
                            dilation_rate=rate,
                            activation=None,
                            use_bias=not normalizer_fn and biases_initializer,
                            kernel_initializer=weights_initializer,
                            bias_initializer=biases_initializer,
                            kernel_regularizer=weights_regularizer,
                            bias_regularizer=biases_regularizer,
                            activity_regularizer=None,
                            trainable=trainable,
                            name=sc.name,
                            dtype=inputs.dtype.base_dtype,
                            _scope=sc,
                            _reuse=reuse)
        outputs = layer.apply(inputs)

        # Add variables to collections.
        _add_variable_to_collections(layer.kernel, variables_collections,
                                     'weights')
        if layer.use_bias:
            _add_variable_to_collections(layer.bias, variables_collections,
                                         'biases')

        if normalizer_fn is not None:
            normalizer_params = normalizer_params or {}
            outputs = normalizer_fn(outputs, **normalizer_params)

        if activation_fn is not None:
            outputs = activation_fn(outputs)
        return utils.collect_named_outputs(outputs_collections,
                                           sc.original_name_scope, outputs)
Exemple #8
0
def masked_fully_connected(
        inputs,
        num_outputs,
        activation_fn=nn.relu,
        normalizer_fn=None,
        normalizer_params=None,
        weights_initializer=initializers.xavier_initializer(),
        weights_regularizer=None,
        biases_initializer=init_ops.zeros_initializer(),
        biases_regularizer=None,
        reuse=None,
        variables_collections=None,
        outputs_collections=None,
        trainable=True,
        scope=None):
    """Adds a sparse fully connected layer. The weight matrix is masked.

  `fully_connected` creates a variable called `weights`, representing a fully
  connected weight matrix, which is multiplied by the `inputs` to produce a
  `Tensor` of hidden units. If a `normalizer_fn` is provided (such as
  `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is
  None and a `biases_initializer` is provided then a `biases` variable would be
  created and added the hidden units. Finally, if `activation_fn` is not `None`,
  it is applied to the hidden units as well.

  Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened
  prior to the initial matrix multiply by `weights`.

  Args:
    inputs: A tensor of at least rank 2 and static value for the last dimension;
      i.e. `[batch_size, depth]`, `[None, None, None, channels]`.
    num_outputs: Integer or long, the number of output units in the layer.
    activation_fn: Activation function. The default value is a ReLU function.
      Explicitly set it to None to skip it and maintain a linear activation.
    normalizer_fn: Normalization function to use instead of `biases`. If
      `normalizer_fn` is provided then `biases_initializer` and
      `biases_regularizer` are ignored and `biases` are not created nor added.
      default set to None for no normalizer function
    normalizer_params: Normalization function parameters.
    weights_initializer: An initializer for the weights.
    weights_regularizer: Optional regularizer for the weights.
    biases_initializer: An initializer for the biases. If None skip biases.
    biases_regularizer: Optional regularizer for the biases.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional list of collections for all the variables or
      a dictionary containing a different list of collections per variable.
    outputs_collections: Collection to add the outputs.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
    scope: Optional scope for variable_scope.

  Returns:
     The tensor variable representing the result of the series of operations.

  Raises:
    ValueError: If x has rank less than 2 or if its last dimension is not set.
  """
    if not isinstance(num_outputs, six.integer_types):
        raise ValueError('num_outputs should be int or long, got %s.' %
                         (num_outputs, ))

    layer_variable_getter = _build_variable_getter({
        'bias': 'biases',
        'kernel': 'weights'
    })

    with variable_scope.variable_scope(
            scope,
            'fully_connected', [inputs],
            reuse=reuse,
            custom_getter=layer_variable_getter) as sc:
        inputs = ops.convert_to_tensor(inputs)
        layer = core.MaskedFullyConnected(
            units=num_outputs,
            activation=None,
            use_bias=not normalizer_fn and biases_initializer,
            kernel_initializer=weights_initializer,
            bias_initializer=biases_initializer,
            kernel_regularizer=weights_regularizer,
            bias_regularizer=biases_regularizer,
            activity_regularizer=None,
            trainable=trainable,
            name=sc.name,
            dtype=inputs.dtype.base_dtype,
            _scope=sc,
            _reuse=reuse)
        outputs = layer.apply(inputs)

        # Add variables to collections.
        _add_variable_to_collections(layer.kernel, variables_collections,
                                     'weights')
        if layer.bias is not None:
            _add_variable_to_collections(layer.bias, variables_collections,
                                         'biases')

        # Apply normalizer function / layer.
        if normalizer_fn is not None:
            if not normalizer_params:
                normalizer_params = {}
            outputs = normalizer_fn(outputs, **normalizer_params)

        if activation_fn is not None:
            outputs = activation_fn(outputs)

        return utils.collect_named_outputs(outputs_collections,
                                           sc.original_name_scope, outputs)
def instance_norm(inputs,
                  center=True,
                  scale=True,
                  epsilon=1e-6,
                  activation_fn=None,
                  param_initializers=None,
                  reuse=None,
                  variables_collections=None,
                  outputs_collections=None,
                  trainable=True,
                  data_format=DATA_FORMAT_NHWC,
                  scope=None):
    """Functional interface for the instance normalization layer.

  Reference: https://arxiv.org/abs/1607.08022.

    "Instance Normalization: The Missing Ingredient for Fast Stylization"
    Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky

  Args:
    inputs: A tensor with 2 or more dimensions, where the first dimension has
      `batch_size`. The normalization is over all but the last dimension if
      `data_format` is `NHWC` and the second dimension if `data_format` is
      `NCHW`.
    center: If True, add offset of `beta` to normalized tensor. If False, `beta`
      is ignored.
    scale: If True, multiply by `gamma`. If False, `gamma` is
      not used. When the next layer is linear (also e.g. `nn.relu`), this can be
      disabled since the scaling can be done by the next layer.
    epsilon: Small float added to variance to avoid dividing by zero.
    activation_fn: Activation function, default set to None to skip it and
      maintain a linear activation.
    param_initializers: Optional initializers for beta, gamma, moving mean and
      moving variance.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional collections for the variables.
    outputs_collections: Collections to add the outputs.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    data_format: A string. `NHWC` (default) and `NCHW` are supported.
    scope: Optional scope for `variable_scope`.

  Returns:
    A `Tensor` representing the output of the operation.

  Raises:
    ValueError: If `data_format` is neither `NHWC` nor `NCHW`.
    ValueError: If the rank of `inputs` is undefined.
    ValueError: If rank or channels dimension of `inputs` is undefined.
  """
    inputs = ops.convert_to_tensor(inputs)
    inputs_shape = inputs.shape
    inputs_rank = inputs.shape.ndims

    if inputs_rank is None:
        raise ValueError('Inputs %s has undefined rank.' % inputs.name)
    if data_format not in (DATA_FORMAT_NCHW, DATA_FORMAT_NHWC):
        raise ValueError('data_format has to be either NCHW or NHWC.')

    with variable_scope.variable_scope(scope,
                                       'InstanceNorm', [inputs],
                                       reuse=reuse) as sc:
        if data_format == DATA_FORMAT_NCHW:
            reduction_axis = 1
            # For NCHW format, rather than relying on implicit broadcasting, we
            # explicitly reshape the params to params_shape_broadcast when computing
            # the moments and the batch normalization.
            params_shape_broadcast = list([1, inputs_shape[1].value] +
                                          [1 for _ in range(2, inputs_rank)])
        else:
            reduction_axis = inputs_rank - 1
            params_shape_broadcast = None
        moments_axes = list(range(inputs_rank))
        del moments_axes[reduction_axis]
        del moments_axes[0]
        params_shape = inputs_shape[reduction_axis:reduction_axis + 1]
        if not params_shape.is_fully_defined():
            raise ValueError('Inputs %s has undefined channels dimension %s.' %
                             (inputs.name, params_shape))

        # Allocate parameters for the beta and gamma of the normalization.
        beta, gamma = None, None
        dtype = inputs.dtype.base_dtype
        if param_initializers is None:
            param_initializers = {}
        if center:
            beta_collections = utils.get_variable_collections(
                variables_collections, 'beta')
            beta_initializer = param_initializers.get(
                'beta', init_ops.zeros_initializer())
            beta = variables.model_variable('beta',
                                            shape=params_shape,
                                            dtype=dtype,
                                            initializer=beta_initializer,
                                            collections=beta_collections,
                                            trainable=trainable)
            if params_shape_broadcast:
                beta = array_ops.reshape(beta, params_shape_broadcast)
        if scale:
            gamma_collections = utils.get_variable_collections(
                variables_collections, 'gamma')
            gamma_initializer = param_initializers.get(
                'gamma', init_ops.ones_initializer())
            gamma = variables.model_variable('gamma',
                                             shape=params_shape,
                                             dtype=dtype,
                                             initializer=gamma_initializer,
                                             collections=gamma_collections,
                                             trainable=trainable)
            if params_shape_broadcast:
                gamma = array_ops.reshape(gamma, params_shape_broadcast)

        # Calculate the moments (instance activations).
        mean, variance = nn.moments(inputs, moments_axes, keep_dims=True)

        # Compute instance normalization.
        outputs = nn.batch_normalization(inputs,
                                         mean,
                                         variance,
                                         beta,
                                         gamma,
                                         epsilon,
                                         name='instancenorm')
        if activation_fn is not None:
            outputs = activation_fn(outputs)
        return utils.collect_named_outputs(outputs_collections, sc.name,
                                           outputs)
def group_norm(inputs,
               groups=32,
               channels_axis=-1,
               reduction_axes=(-3, -2),
               center=True,
               scale=True,
               epsilon=1e-6,
               activation_fn=None,
               param_initializers=None,
               reuse=None,
               variables_collections=None,
               outputs_collections=None,
               trainable=True,
               scope=None,
               mean_close_to_zero=False):
    """Functional interface for the group normalization layer.

  Reference: https://arxiv.org/abs/1803.08494.

    "Group Normalization", Yuxin Wu, Kaiming He

  Args:
    inputs: A Tensor with at least 2 dimensions one which is channels. All
     shape dimensions except for batch must be fully defined.
    groups: Integer. Divide the channels into this number of groups over which
      normalization statistics are computed. This number must be commensurate
      with the number of channels in `inputs`.
    channels_axis: An integer. Specifies index of channels axis which will be
      broken into `groups`, each of which whose statistics will be computed
      across. Must be mutually exclusive with `reduction_axes`. Preferred usage
      is to specify negative integers to be agnostic as to whether a batch
      dimension is included.
    reduction_axes: Tuple of integers. Specifies dimensions over which
       statistics will be accumulated. Must be mutually exclusive with
       `channels_axis`. Statistics will not be accumulated across axes not
       specified in `reduction_axes` nor `channel_axis`. Preferred usage is to
       specify negative integers to be agnostic to whether a batch dimension is
       included.

      Some sample usage cases:
        NHWC format: channels_axis=-1, reduction_axes=[-3, -2]
        NCHW format: channels_axis=-3, reduction_axes=[-2, -1]

    center: If True, add offset of `beta` to normalized tensor. If False, `beta`
      is ignored.
    scale: If True, multiply by `gamma`. If False, `gamma` is
      not used. When the next layer is linear (also e.g. `nn.relu`), this can be
      disabled since the scaling can be done by the next layer.
    epsilon: Small float added to variance to avoid dividing by zero.
    activation_fn: Activation function, default set to None to skip it and
      maintain a linear activation.
    param_initializers: Optional initializers for beta, gamma, moving mean and
      moving variance.
    reuse: Whether or not the layer and its variables should be reused. To be
      able to reuse the layer scope must be given.
    variables_collections: Optional collections for the variables.
    outputs_collections: Collections to add the outputs.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    scope: Optional scope for `variable_scope`.
    mean_close_to_zero: The mean of `input` before ReLU will be close to zero
      when batch size >= 4k for Resnet-50 on TPU. If `True`, use
      `nn.sufficient_statistics` and `nn.normalize_moments` to calculate the
      variance. This is the same behavior as `fused` equals `True` in batch
      normalization. If `False`, use `nn.moments` to calculate the variance.
      When `mean` is close to zero, like 1e-4, use `mean` to calculate the
      variance may have poor result due to repeated roundoff error and
      denormalization in `mean`.  When `mean` is large, like 1e2,
      sum(`input`^2) is so large that only the high-order digits of the elements
      are being accumulated. Thus, use sum(`input` - `mean`)^2/n to calculate
      the variance has better accuracy compared to (sum(`input`^2)/n - `mean`^2)
      when `mean` is large.


  Returns:
    A `Tensor` representing the output of the operation.

  Raises:
    ValueError: If the rank of `inputs` is undefined.
    ValueError: If rank or channels dimension of `inputs` is undefined.
    ValueError: If number of groups is not commensurate with number of channels.
    ValueError: If reduction_axes or channels_axis are out of bounds.
    ValueError: If reduction_axes are not mutually exclusive with channels_axis.
  """
    # TODO(shlens): Support partially defined shapes for the inputs.
    inputs = ops.convert_to_tensor(inputs)

    if inputs.shape.ndims is None:
        raise ValueError('Inputs %s has undefined rank.' % inputs.name)
    if channels_axis > (inputs.shape.ndims - 1):
        raise ValueError('Axis is out of bounds.')

    # Use dynamic shape for not fully defined dimensions in the inputs.
    dyanmic_shape = array_ops.shape(inputs)
    input_shape_list = []
    for i, dim in enumerate(inputs.shape):
        if dim.value is None:
            input_shape_list.append(dyanmic_shape[i])
        else:
            input_shape_list.append(dim)

    # Standardize the channels_axis to be positive and identify # of channels.
    if channels_axis < 0:
        channels_axis = inputs.shape.ndims + channels_axis
    channels = inputs.shape[channels_axis].value

    if channels is None:
        raise ValueError('Inputs %s has undefined channel dimension: %d.' %
                         (inputs.name, channels_axis))

    # Standardize the reduction_axes to be positive.
    reduction_axes = list(reduction_axes)
    for i in range(len(reduction_axes)):
        if reduction_axes[i] < 0:
            reduction_axes[i] += inputs.shape.ndims

    for a in reduction_axes:
        if a > inputs.shape.ndims:
            raise ValueError('Axis is out of bounds.')
        if inputs.shape[a].value is None:
            raise ValueError('Inputs %s has undefined dimensions %d.' %
                             (inputs.name, a))
        if channels_axis == a:
            raise ValueError('reduction_axis must be mutually exclusive '
                             'with channels_axis')
    if groups > channels:
        raise ValueError('Invalid groups %d for %d channels.' %
                         (groups, channels))
    if channels % groups != 0:
        raise ValueError('%d channels is not commensurate with %d groups.' %
                         (channels, groups))

    # Determine axes before channels. Some examples of common image formats:
    #  'NCHW': before = [N], after = [HW]
    #  'NHWC': before = [NHW], after = []
    axes_before_channels = input_shape_list[:channels_axis]
    axes_after_channels = input_shape_list[channels_axis + 1:]

    # Manually broadcast the parameters to conform to the number of groups.
    params_shape_broadcast = ([1] * len(axes_before_channels) +
                              [groups, channels // groups] +
                              [1] * len(axes_after_channels))

    # Reshape the input by the group within the channel dimension.
    inputs_shape = (axes_before_channels + [groups, channels // groups] +
                    axes_after_channels)
    inputs = array_ops.reshape(inputs, inputs_shape)

    # Determine the dimensions across which moments are calculated.
    moments_axes = [channels_axis + 1]
    for a in reduction_axes:
        if a > channels_axis:
            moments_axes.append(a + 1)
        else:
            moments_axes.append(a)

    with variable_scope.variable_scope(scope,
                                       'GroupNorm', [inputs],
                                       reuse=reuse) as sc:
        # Note that the params_shape is the number of channels always.
        params_shape = [channels]

        # Allocate parameters for the beta and gamma of the normalization.
        beta, gamma = None, None
        dtype = inputs.dtype.base_dtype
        if param_initializers is None:
            param_initializers = {}
        if center:
            beta_collections = utils.get_variable_collections(
                variables_collections, 'beta')
            beta_initializer = param_initializers.get(
                'beta', init_ops.zeros_initializer())
            beta = variables.model_variable('beta',
                                            shape=params_shape,
                                            dtype=dtype,
                                            initializer=beta_initializer,
                                            collections=beta_collections,
                                            trainable=trainable)
            beta = array_ops.reshape(beta, params_shape_broadcast)

        if scale:
            gamma_collections = utils.get_variable_collections(
                variables_collections, 'gamma')
            gamma_initializer = param_initializers.get(
                'gamma', init_ops.ones_initializer())
            gamma = variables.model_variable('gamma',
                                             shape=params_shape,
                                             dtype=dtype,
                                             initializer=gamma_initializer,
                                             collections=gamma_collections,
                                             trainable=trainable)
            gamma = array_ops.reshape(gamma, params_shape_broadcast)

        # Calculate the moments.
        if mean_close_to_zero:
            # One pass algorithm returns better result when mean is close to zero.
            counts, means_ss, variance_ss, _ = nn.sufficient_statistics(
                inputs, moments_axes, keep_dims=True)
            mean, variance = nn.normalize_moments(counts,
                                                  means_ss,
                                                  variance_ss,
                                                  shift=None)
        else:
            mean, variance = nn.moments(inputs, moments_axes, keep_dims=True)

        # Compute normalization.
        # TODO(shlens): Fix nn.batch_normalization to handle the 5-D Tensor
        # appropriately so that this operation may be faster.
        gain = math_ops.rsqrt(variance + epsilon)
        offset = -mean * gain
        if gamma is not None:
            gain *= gamma
            offset *= gamma
        if beta is not None:
            offset += beta
        outputs = inputs * gain + offset

        # Collapse the groups into the channel dimension.
        outputs = array_ops.reshape(outputs, input_shape_list)

        if activation_fn is not None:
            outputs = activation_fn(outputs)
        return utils.collect_named_outputs(outputs_collections, sc.name,
                                           outputs)
Exemple #11
0
def stack_blocks_dense(net,
                       blocks,
                       output_stride=None,
                       outputs_collections=None):
    """Stacks ResNet `Blocks` and controls output feature density.

  First, this function creates scopes for the ResNet in the form of
  'block_name/unit_1', 'block_name/unit_2', etc.

  Second, this function allows the user to explicitly control the ResNet
  output_stride, which is the ratio of the input to output spatial resolution.
  This is useful for dense prediction tasks such as semantic segmentation or
  object detection.

  Most ResNets consist of 4 ResNet blocks and subsample the activations by a
  factor of 2 when transitioning between consecutive ResNet blocks. This results
  to a nominal ResNet output_stride equal to 8. If we set the output_stride to
  half the nominal network stride (e.g., output_stride=4), then we compute
  responses twice.

  Control of the output feature density is implemented by atrous convolution.

  Args:
    net: A `Tensor` of size [batch, height, width, channels].
    blocks: A list of length equal to the number of ResNet `Blocks`. Each
      element is a ResNet `Block` object describing the units in the `Block`.
    output_stride: If `None`, then the output will be computed at the nominal
      network stride. If output_stride is not `None`, it specifies the requested
      ratio of input to output spatial resolution, which needs to be equal to
      the product of unit strides from the start up to some level of the ResNet.
      For example, if the ResNet employs units with strides 1, 2, 1, 3, 4, 1,
      then valid values for the output_stride are 1, 2, 6, 24 or None (which
      is equivalent to output_stride=24).
    outputs_collections: Collection to add the ResNet block outputs.

  Returns:
    net: Output tensor with stride equal to the specified output_stride.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    # The current_stride variable keeps track of the effective stride of the
    # activations. This allows us to invoke atrous convolution whenever applying
    # the next residual unit would result in the activations having stride larger
    # than the target output_stride.
    current_stride = 1

    # The atrous convolution rate parameter.
    rate = 1

    for block in blocks:
        with variable_scope.variable_scope(block.scope, 'block', [net]) as sc:
            for i, unit in enumerate(block.args):
                if output_stride is not None and current_stride > output_stride:
                    raise ValueError(
                        'The target output_stride cannot be reached.')

                with variable_scope.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                    # If we have reached the target output_stride, then we need to employ
                    # atrous convolution with stride=1 and multiply the atrous rate by the
                    # current unit's stride for use in subsequent layers.
                    if output_stride is not None and current_stride == output_stride:
                        net = block.unit_fn(net,
                                            rate=rate,
                                            **dict(unit, stride=1))
                        rate *= unit.get('stride', 1)

                    else:
                        net = block.unit_fn(net, rate=1, **unit)
                        current_stride *= unit.get('stride', 1)
            net = utils.collect_named_outputs(outputs_collections, sc.name,
                                              net)

    if output_stride is not None and current_stride != output_stride:
        raise ValueError('The target output_stride cannot be reached.')

    return net