Exemple #1
0
    def test_starfind_strong_weak(self):
        size = (100, 200)
        posx = (50, 150)
        posy = (40, 60)
        sky = 800
        rdnoise = 20
        flux = (64000, 6000)
        theta = 0
        fwhm = 3
        sigma = fwhm * gaussian_fwhm_to_sigma
        threshold = 10
        im = gen_image(size,
                       posx,
                       posy,
                       flux,
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)

        sources = starfind(im, threshold, sky, rdnoise, fwhm)

        assert_equal(len(sources), 2)
        assert_almost_equal(sources['x'], posx, decimal=1)
        assert_almost_equal(sources['y'], posy, decimal=1)
        assert_almost_equal(sources.meta['astropop fwhm'],
                            sigma * 2.355,
                            decimal=1)
    def test_simbad_catalog_filter_id(self):
        # performe filter in a different class
        query = self.cat.query_region('Sirius', '5m')
        id = self.cat.filter_id(query)
        id_resolved = self.cat._id_resolve(query['MAIN_ID'])

        assert_equal(id, id_resolved)
 def test_extract_header_nowcs(self):
     header = fits.Header.fromstring(_base_header, sep='\n')
     h, wcs = extract_header_wcs(header)
     assert_is_none(wcs)
     assert_is_instance(h, fits.Header)
     assert_equal(h, header)
     assert_false(h is header)
Exemple #4
0
def test_guess_coords_skycord_float():
    ra = 10.0
    dec = 0.0
    sk = guess_coordinates(ra, dec, skycoord=True)
    assert_is_instance(sk, SkyCoord)
    assert_equal(sk.ra.degree, ra)
    assert_equal(sk.dec.degree, dec)
Exemple #5
0
 def test_fg_getitem_slice(self, tmpdir):
     tmpdir, flist = tmpdir
     fg = FitsFileGroup(location=tmpdir / 'fits', compression=False)
     row = fg[2:5]
     assert_is_instance(row, FitsFileGroup)
     assert_equal(len(row), 3)
     assert_equal(row.files, flist['fits'][2:5])
Exemple #6
0
 def test_fg_getitem_empty(self, tmpdir):
     tmpdir, flist = tmpdir
     fg = FitsFileGroup(location=tmpdir / 'fits', compression=False)
     row = fg[[]]
     assert_is_instance(row, FitsFileGroup)
     assert_equal(len(row), 0)
     assert_equal(row.files, [])
Exemple #7
0
    def test_1D_simple(self):
        arr = np.arange(10)
        low, high = (2, 6)
        expect = np.array([1, 1, 0, 0, 0, 0, 0, 1, 1, 1], dtype=bool)

        mask = _minmax_clip(arr, low, high)
        assert_equal(mask, expect)
Exemple #8
0
    def test_apply_minmax_clip(self):
        _min, _max = (0, 20)
        outliers = ((1, 2), (6, 2), (2, 9), (5, 2))
        outvalues = [1e6, -2e3, 5e3, -7e2]
        expect = np.zeros((10, 10))
        with NumpyRNGContext(123):
            data = np.ma.MaskedArray(np.random.normal(loc=10,
                                                      scale=1,
                                                      size=[10, 10]),
                                     mask=np.zeros((10, 10)))

        for p, v in zip(outliers, outvalues):
            data[p] = v
            expect[p] = 1
        data[0:2, 0:3].mask = 1
        expect[0:2, 0:3] = 1

        # force assign the buffer
        comb = ImCombiner()
        comb._buffer = data
        # with these limits, only the outliers must be masked
        comb.set_minmax_clip(_min, _max)
        comb._apply_rejection()
        # original mask must be kept
        assert_equal(comb._buffer.mask, expect)
Exemple #9
0
    def test_sepfind_multiple_stars(self):
        size = (1024, 1024)
        number = 15
        low = 2000
        high = 30000
        sky = 800
        rdnoise = 20
        sigma = 3
        theta = 0

        x, y, f = gen_position_flux(size, number, low, high, rng_seed=456)
        im = gen_image(size,
                       x,
                       y,
                       f,
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)

        sources = sepfind(im, 5, sky, rdnoise)

        x, y, f = self.resort_sources(x, y, f)

        assert_equal(len(sources), number)
        assert_almost_equal(sources['x'], x, decimal=0)
        assert_almost_equal(sources['y'], y, decimal=0)
Exemple #10
0
    def test_starfind_recenter_sources(self):
        size = (256, 256)
        number = 10
        sky = 70
        rdnoise = 20
        low = 120000
        high = 320000
        sigma = 5
        theta = 0

        x, y, f = gen_position_flux(size, number, low, high, rng_seed=456)

        im = gen_image(size,
                       x,
                       y,
                       f,
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)

        nx, ny = recenter_sources(
            im,
            x + np.random.normal(loc=0, scale=1, size=len(x)),
            y + np.random.normal(loc=0, scale=1, size=len(x)),
            box_size=15,
            model='gaussian')

        assert_equal(len(nx), number)
        assert_equal(len(ny), number)
        # TODO: this seems unprecise. Investigate it.
        assert_almost_equal(nx, x, decimal=-1)
        assert_almost_equal(ny, y, decimal=-1)
Exemple #11
0
    def test_starfind_one_star(self):
        size = (128, 128)
        x, y = (64, 64)
        f = 80000
        sky = 70
        rdnoise = 20
        sigma = 5
        theta = 0
        fwhm = 5  # dummy low value
        threshold = 10

        im = gen_image(size, [x], [y], [f],
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)

        sources = starfind(im, threshold, sky, rdnoise, fwhm)

        assert_equal(len(sources), 1)
        assert_almost_equal(sources['x'], x, decimal=0)
        assert_almost_equal(sources['y'], y, decimal=0)
        assert_almost_equal(sources.meta['astropop fwhm'],
                            sigma * 2.355,
                            decimal=1)
Exemple #12
0
    def test_daofind_multiple_stars(self):
        size = (512, 512)
        number = 15
        low = 2000
        high = 30000
        sky = 800
        rdnoise = 20
        fwhm = 5
        sigma = fwhm * gaussian_fwhm_to_sigma
        theta = 0
        threshold = 10
        x, y, f = gen_position_flux(size, number, low, high, rng_seed=456)

        im = gen_image(size,
                       x,
                       y,
                       f,
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)

        sources = daofind(im, threshold, sky, rdnoise, fwhm)

        x, y, f = self.resort_sources(x, y, f)

        assert_equal(len(sources), number)
        assert_almost_equal(sources['x'], x, decimal=0)
        assert_almost_equal(sources['y'], y, decimal=0)
Exemple #13
0
    def test_daofind_four_stars_fixed_position(self):
        size = (128, 128)
        posx = (45, 90, 45, 90)
        posy = (45, 50, 90, 100)
        sky = 800
        rdnoise = 20
        flux = (15000, 3000, 5000, 35000)
        fwhm = 3
        sigma = fwhm * gaussian_fwhm_to_sigma
        theta = 0
        threshold = 10

        im = gen_image(size,
                       posx,
                       posy,
                       flux,
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)

        sources = daofind(im, threshold, sky, rdnoise, fwhm)

        assert_equal(len(sources), 4)
        assert_almost_equal(sources['x'], posx, decimal=0)
        assert_almost_equal(sources['y'], posy, decimal=0)
Exemple #14
0
    def test_daofind_strong_and_weak(self):
        size = (128, 128)
        posx = (45, 90)
        posy = (45, 90)
        sky = 800
        rdnoise = 20
        flux = (32000, 16000)
        fwhm = 3
        sigma = fwhm * gaussian_fwhm_to_sigma
        theta = 0
        im = gen_image(size,
                       posx,
                       posy,
                       flux,
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)
        threshold = 10

        sources = daofind(im, threshold, sky, rdnoise, fwhm)

        assert_equal(len(sources), 2)
        assert_almost_equal(sources['x'], posx, decimal=0)
        assert_almost_equal(sources['y'], posy, decimal=0)
Exemple #15
0
 def test_invalid(self):
     # must mask invalid numbers
     arr = np.array([0, 1, 2, np.inf, np.nan, 5, 1])
     low, high = (1, 3)
     expect = np.array([1, 0, 0, 1, 1, 1, 0])
     mask = _minmax_clip(arr, low, high)
     assert_equal(mask, expect)
Exemple #16
0
    def test_starfind_blind_fwhm(self):
        size = (512, 512)
        number = 12
        low, high = (15000, 60000)
        sky = 800
        rdnoise = 20
        sigma = 2
        theta = 0
        threshold = 8

        x, y, f = gen_position_flux(size, number, low, high, rng_seed=456)
        x, y, f = self.resort_sources(x, y, f)

        im = gen_image(size,
                       x,
                       y,
                       f,
                       sky,
                       rdnoise,
                       model='gaussian',
                       sigma=sigma,
                       theta=theta)

        sources = starfind(im, threshold, sky, rdnoise)

        assert_equal(len(sources), number)
        assert_almost_equal(sources['x'], x, decimal=1)
        assert_almost_equal(sources['y'], y, decimal=1)
        assert_almost_equal(sources.meta['astropop fwhm'],
                            sigma * 2.355,
                            decimal=2)
    def test_simbad_catalog_get_simbad_copy(self):
        # always return a copy of the querier
        s = Simbad()

        # assign our simbad
        self.cat.simbad = s
        assert_is_not(self.cat.simbad, s)
        assert_equal(self.cat.simbad.ROW_LIMIT, 0)
Exemple #18
0
    def test_framememta_repr(self):
        a = FrameMeta({'A': 1, 'B': (2, 'with comment'), 'c': 3})
        expect = "FrameMeta:\n"
        expect += "a = 1  # \n"
        expect += "b = 2  # with comment\n"
        expect += "c = 3  # \n"

        assert_equal(repr(a), expect)
 def test_simple_import(self):
     ccd = self.ccd
     f = _extract_ccddata(ccd)
     assert_equal(f['data'], 100 * np.ones(self.shape))
     assert_equal(f['mask'], self.mask)
     assert_equal(f['unit'], self.unit)
     assert_equal(f['meta'], self.meta)
     assert_equal(f['uncertainty'], 10 * np.ones(self.shape))
Exemple #20
0
def test_logger_no_loglist():
    mylog = logger.getChild('testing')
    msg = 'Some error happend here.'
    lh = ListHandler()
    assert_is_instance(lh.log_list, list)
    mylog.addHandler(lh)
    mylog.error(msg)
    assert_equal(lh.log_list[0], msg)
Exemple #21
0
 def test_process_list_with_args(self):
     def dummy_func(i, a, b):
         return (i+a)*b
     i_array = np.arange(20)
     a_val = 2
     b_val = 3
     res = process_list(dummy_func, i_array, a_val, b=b_val)
     assert_equal((i_array+a_val)*b_val, res)
Exemple #22
0
def test_math_int(tmpdir, memmap, value, other):
    f = os.path.join(tmpdir, 'int.npy')
    arr = np.arange(10, dtype='int8') * value
    a = MemMapArray(arr, filename=f, memmap=memmap)
    with pytest.raises(TypeError):
        int(a)

    a = MemMapArray([value], filename=f, memmap=memmap)
    assert_equal(int(value), int(a))
Exemple #23
0
 def test_mergeheaders_default(self):
     # default is 'no_merge'
     images = self.create_images()
     comb = ImCombiner()
     res = comb.combine(images, method='sum')
     assert_equal(res.meta, {
         'astropop imcombine nimages': 30,
         'astropop imcombine method': 'sum'
     })
Exemple #24
0
 def test_process_list(self):
     def dummy_func(i):
         i = 1
         return i
     a = np.zeros(20)
     b = np.ones(20)
     c = process_list(dummy_func, a)
     assert_equal(b, c)
     assert_false(np.array_equal(a, c))
Exemple #25
0
def test_solve_astrometry_hdu(tmpdir):
    data, index = get_image_index()
    hdu = fits.open(data)[0]
    header, wcs = _generate_wcs_and_update_header(hdu.header)
    hdu.header = header
    nwcs = solve_astrometry_hdu(hdu, return_wcs=True)
    assert_true(isinstance(nwcs, WCS))
    assert_equal(nwcs.naxis, 2)
    compare_wcs(wcs, nwcs)
Exemple #26
0
def test_qfloat_unit_property(unit, expect):
    # Getter test
    c = DummyClass(unit)
    assert_equal(c.unit, expect)

    # Setter test
    c = DummyClass(None)
    c.unit = unit
    assert_equal(c.unit, expect)
Exemple #27
0
    def test_list_custom_extension(self, tmpdir):
        tmpdir, flist = tmpdir
        found_files = list_fits_files(tmpdir / 'custom',
                                      fits_extensions='.myfits')
        assert_equal(sorted(found_files), sorted(flist['myfits']))

        found_files = list_fits_files(
            tmpdir / 'custom', fits_extensions=['.myfits', '.otherfits'])
        assert_equal(sorted(found_files), sorted(flist['custom']))
Exemple #28
0
 def test_run_command(self, com):
     stdout = []
     stderr = []
     _, out, err = run_command(com, stdout=stdout, stderr=stderr,
                               stdout_loglevel='WARN')
     assert_is(out, stdout)
     assert_is(err, stderr)
     assert_equal(stdout, [str(i) for i in range(1, 11)])
     assert_equal(stderr, [])
Exemple #29
0
 def test_run_command_stderr(self, com):
     stdout = []
     stderr = []
     _, out, err = run_command(com, stdout=stdout, stderr=stderr,
                               stdout_loglevel='WARN')
     assert_is(out, stdout)
     assert_is(err, stderr)
     assert_equal(stdout, [])
     assert_equal(stderr, ['this is an error'])
Exemple #30
0
    def test_apply_sigmaclip_only_higher(self):
        data = np.ma.MaskedArray([1, -1, 1, -1, -65000], mask=np.zeros(5))
        comb = ImCombiner()

        # -65000 must not be masked
        comb._buffer = data.copy()
        comb.set_sigma_clip((None, 1))
        expect = [0, 0, 0, 0, 0]
        comb._apply_rejection()
        assert_equal(comb._buffer.mask, expect)