def cirs_to_altaz(cirs_coo, altaz_frame):
    if np.any(cirs_coo.obstime != altaz_frame.obstime):
        # the only frame attribute for the current CIRS is the obstime, but this
        # would need to be updated if a future change allowed specifying an
        # Earth location algorithm or something
        cirs_coo = cirs_coo.transform_to(CIRS(obstime=altaz_frame.obstime))

    # we use the same obstime everywhere now that we know they're the same
    obstime = cirs_coo.obstime

    # if the data are UnitSphericalRepresentation, we can skip the distance calculations
    is_unitspherical = (isinstance(cirs_coo.data, UnitSphericalRepresentation) or
                        cirs_coo.cartesian.x.unit == u.one)

    if is_unitspherical:
        usrepr = cirs_coo.represent_as(UnitSphericalRepresentation)
        cirs_ra = usrepr.lon.to_value(u.radian)
        cirs_dec = usrepr.lat.to_value(u.radian)
    else:
        # compute an "astrometric" ra/dec -i.e., the direction of the
        # displacement vector from the observer to the target in CIRS
        loccirs = altaz_frame.location.get_itrs(cirs_coo.obstime).transform_to(cirs_coo)
        diffrepr = (cirs_coo.cartesian - loccirs.cartesian).represent_as(UnitSphericalRepresentation)

        cirs_ra = diffrepr.lon.to_value(u.radian)
        cirs_dec = diffrepr.lat.to_value(u.radian)

    lon, lat, height = altaz_frame.location.to_geodetic('WGS84')
    xp, yp = get_polar_motion(obstime)

    # first set up the astrometry context for CIRS<->AltAz
    jd1, jd2 = get_jd12(obstime, 'utc')
    astrom = erfa.apio13(jd1, jd2,
                         get_dut1utc(obstime),
                         lon.to_value(u.radian), lat.to_value(u.radian),
                         height.to_value(u.m),
                         xp, yp,  # polar motion
                         # all below are already in correct units because they are QuantityFrameAttribues
                         altaz_frame.pressure.value,
                         altaz_frame.temperature.value,
                         altaz_frame.relative_humidity.value,
                         altaz_frame.obswl.value)

    az, zen, _, _, _ = erfa.atioq(cirs_ra, cirs_dec, astrom)

    if is_unitspherical:
        rep = UnitSphericalRepresentation(lat=u.Quantity(PIOVER2 - zen, u.radian, copy=False),
                                          lon=u.Quantity(az, u.radian, copy=False),
                                          copy=False)
    else:
        # now we get the distance as the cartesian distance from the earth
        # location to the coordinate location
        locitrs = altaz_frame.location.get_itrs(obstime)
        distance = locitrs.separation_3d(cirs_coo)
        rep = SphericalRepresentation(lat=u.Quantity(PIOVER2 - zen, u.radian, copy=False),
                                      lon=u.Quantity(az, u.radian, copy=False),
                                      distance=distance,
                                      copy=False)
    return altaz_frame.realize_frame(rep)
Exemple #2
0
def _erfa_check(ira, idec, astrom):
    """
    This function does the same thing the astropy layer is supposed to do, but
    all in erfa
    """
    cra, cdec = erfa.atciq(ira, idec, 0, 0, 0, 0, astrom)
    az, zen, ha, odec, ora = erfa.atioq(cra, cdec, astrom)
    alt = np.pi / 2 - zen
    cra2, cdec2 = erfa.atoiq('A', az, zen, astrom)
    ira2, idec2 = erfa.aticq(cra2, cdec2, astrom)

    dct = locals()
    del dct['astrom']
    return dct
Exemple #3
0
def _erfa_check(ira, idec, astrom):
    """
    This function does the same thing the astropy layer is supposed to do, but
    all in erfa
    """
    cra, cdec = erfa.atciq(ira, idec, 0, 0, 0, 0, astrom)
    az, zen, ha, odec, ora = erfa.atioq(cra, cdec, astrom)
    alt = np.pi/2-zen
    cra2, cdec2 = erfa.atoiq('A', az, zen, astrom)
    ira2, idec2 = erfa.aticq(cra2, cdec2, astrom)

    dct = locals()
    del dct['astrom']
    return dct
Exemple #4
0
def cirs_to_altaz(cirs_coo, altaz_frame):
    if np.any(cirs_coo.obstime != altaz_frame.obstime):
        # the only frame attribute for the current CIRS is the obstime, but this
        # would need to be updated if a future change allowed specifying an
        # Earth location algorithm or something
        cirs_coo = cirs_coo.transform_to(CIRS(obstime=altaz_frame.obstime))

    # we use the same obstime everywhere now that we know they're the same
    obstime = cirs_coo.obstime

    # if the data are UnitSphericalRepresentation, we can skip the distance calculations
    is_unitspherical = (isinstance(cirs_coo.data, UnitSphericalRepresentation)
                        or cirs_coo.cartesian.x.unit == u.one)

    if is_unitspherical:
        usrepr = cirs_coo.represent_as(UnitSphericalRepresentation)
        cirs_ra = usrepr.lon.to_value(u.radian)
        cirs_dec = usrepr.lat.to_value(u.radian)
    else:
        # compute an "astrometric" ra/dec -i.e., the direction of the
        # displacement vector from the observer to the target in CIRS
        loccirs = altaz_frame.location.get_itrs(
            cirs_coo.obstime).transform_to(cirs_coo)
        diffrepr = (
            cirs_coo.cartesian -
            loccirs.cartesian).represent_as(UnitSphericalRepresentation)

        cirs_ra = diffrepr.lon.to_value(u.radian)
        cirs_dec = diffrepr.lat.to_value(u.radian)

    lon, lat, height = altaz_frame.location.to_geodetic('WGS84')
    xp, yp = get_polar_motion(obstime)

    # first set up the astrometry context for CIRS<->AltAz
    jd1, jd2 = get_jd12(obstime, 'utc')
    astrom = erfa.apio13(
        jd1,
        jd2,
        get_dut1utc(obstime),
        lon.to_value(u.radian),
        lat.to_value(u.radian),
        height.to_value(u.m),
        xp,
        yp,  # polar motion
        # all below are already in correct units because they are QuantityFrameAttribues
        altaz_frame.pressure.value,
        altaz_frame.temperature.value,
        altaz_frame.relative_humidity.value,
        altaz_frame.obswl.value)

    az, zen, _, _, _ = erfa.atioq(cirs_ra, cirs_dec, astrom)

    if is_unitspherical:
        rep = UnitSphericalRepresentation(lat=u.Quantity(PIOVER2 - zen,
                                                         u.radian,
                                                         copy=False),
                                          lon=u.Quantity(az,
                                                         u.radian,
                                                         copy=False),
                                          copy=False)
    else:
        # now we get the distance as the cartesian distance from the earth
        # location to the coordinate location
        locitrs = altaz_frame.location.get_itrs(obstime)
        distance = locitrs.separation_3d(cirs_coo)
        rep = SphericalRepresentation(lat=u.Quantity(PIOVER2 - zen,
                                                     u.radian,
                                                     copy=False),
                                      lon=u.Quantity(az, u.radian, copy=False),
                                      distance=distance,
                                      copy=False)
    return altaz_frame.realize_frame(rep)