Exemple #1
0
        lens_z = lens[:, 4]

        print "randoms to lens ratio", nrands * 1.0 / len(lens)

        print "assigning redshifts to randoms"
        hist, bins = np.histogram(lens_z, bins=50)
        bin_midpoints = bins[:-1] + np.diff(bins) / 2
        cdf = np.cumsum(hist)
        cdf = cdf / float(cdf[-1])
        nrands = len(rname)
        values = np.random.rand(nrands)
        value_bins = np.searchsorted(cdf, values)
        rand_z = bin_midpoints[value_bins]

        R, St, Sx, W, Str, Sxr, Wr, Npairs, Sc = dsigma(lens, source)
        print "done with dsigma_i"

        Rc = cosmo.kpc_comoving_per_arcmin(np.median(lens_z)) * R

        dsigma_file = h5py.File(
            "pau_tim_deltasigma_bkg_z_" + str(zl1) + "_" + str(zl2) + "_" +
            str(zpeak) + ".h5", "w")
        dsigma_file.create_dataset("r", (5, ), data=Rc)
        dsigma_file.create_dataset("dsigma_lens", (5, ), data=St)
        dsigma_file.create_dataset("dsigma_random", (5, ), data=Str)
        dsigma_file.create_dataset("npairs", (5, ), data=Npairs)
        dsigma_file.create_dataset("Sc", (1, ), data=Sc)
        dsigma_file.close()

        print "done with writing the file for the lens bin", i
Exemple #2
0
galmask = (rmag_abs < -21.) & (galZ < zmax)
galRA, galDEC, galZ, rmag, rmag_abs = galRA[galmask], galDEC[galmask], galZ[
    galmask], rmag[galmask], rmag_abs[galmask]

# Calculating the number of galaxies...
Ngals = np.array([np.sum(galZ < zbins[z])
                  for z in range(len(zbins))])  # below each redshift bin
Ngals_high = len(galZ) - Ngals  # above each redshift bin

# Calculating the volume of the cone at each redshift bin
cosmo = LambdaCDM(H0=70., Om0=0.315, Ode0=0.685)

Dcbins = (cosmo.comoving_distance(zbins).to('Mpc')
          ).value  # Comoving distance to each bin limit
Mpc_am = (cosmo.kpc_comoving_per_arcmin(zbins).to('Mpc/arcmin')
          ).value  # Comoving distance per arcmin at each bin limit
areabins = np.pi * (
    theta * Mpc_am)**2.  # Comoving area of the circle at each bin limit
#covolbins = cosmo.comoving_volume(zbins).to('kpc3').value

covolbins = 1. / 3. * areabins * Dcbins  # Comoving cone volume below each bin limit
covolbins_high = covolbins[
    -1] - covolbins  # Comoving cone volume above each bin limit

density = Ngals / covolbins  # Density below the redshift limit
density_high = Ngals_high / covolbins_high  # Density above the redshift limit

densmask = (0.2 < zbins) & (zbins < 0.25)
densplus = np.sum(zbins < 0.2)
Exemple #3
0
class MaNGA(object):
    """Class for a MaNGA observated galaxy"""
    def __init__(self, *arg, mangaid=None):
        """use plateifu and mangaid as the keyword to define a galaxy
        
            *arg: Only the first one is used, as the plateifu
            mangaid: the mangaid of the galaxy

            return MaNGA
        """

        ## Define the global data directories
        self.COSMO = LambdaCDM(H0=70, Om0=0.3, Ode0=0.7)
        self.ESP = 1e-8
        self.C = 299792  # speed of light (km/s)
        self.drp_version = DRP_VERSION
        self.dap_version = DAP_VERSION
        ## Pre-read the DRP data

        if arg:
            self.plateifu = arg[0]
            self.drp = DRP[DRP['plateifu'] == self.plateifu]
            self.mangaid = self.drp['mangaid'][0]
        elif mangaid:
            self.mangaid = mangaid
            self.drp = DRP[DRP['mangaid'] == self.mangaid]
            self.plateifu = self.drp['plateifu'][0]
        else:
            print("No valid plateifu or mangaid detected!")
            raise ValueError
        self.plate, self.ifudsgn = re.split('-', self.plateifu)
        self.logcube_file = "{0}/{1}/stack/manga-{1}-{2}-LOGCUBE.fits.gz".format(
            DRP_DIR, self.plate, self.ifudsgn)
        if DAP_VERSION < '2.3.0':  # before MPL8
            self.mapsfile = DAP_DIR+self.plate + '/'+self.ifudsgn+'/' \
                            + 'manga-' + self.plate + '-' + self.ifudsgn \
                            + '-MAPS-{}-GAU-MILESHC.fits.gz'.format(PRODOCTS)
            self.datacubefile = DAP_DIR + '/'+self.plate+'/' \
                                + self.ifudsgn+'/'+'manga-' + self.plate \
                                + '-' + self.ifudsgn \
                                + '-LOGCUBE-{}-GAU-MILESHC.fits.gz'.format(PRODOCTS)
        elif DAP_VERSION >= '2.3.0':  #After MPL8
            self.mapsfile = '{0}/{1}/{2}/manga-{1}-{2}-MAPS-{3}-MILESHC-MILESHC.fits.gz'.format(
                DAP_DIR, self.plate, self.ifudsgn, PRODOCTS)
            self.datacubefile = '{0}/{1}/{2}/manga-{1}-{2}-LOGCUBE-{3}-MILESHC-MILESHC.fits.gz'.format(
                DAP_DIR, self.plate, self.ifudsgn, PRODOCTS)

        if IMAGE_DIR is None:
            self.image_file = "{}/{}/images/{}.png".format(
                DRP_DIR, self.plate, self.ifudsgn)
        else:
            self.image_file = "{}/{}-{}.png".format(IMAGE_DIR, self.plate,
                                                    self.ifudsgn)
        self.ra = self.drp['objra'][0]
        self.dec = self.drp['objdec'][0]
        self.ifura = self.drp['ifura'][0]
        self.ifudec = self.drp['ifudec'][0]
        self.elpetro_r = self.drp['nsa_elpetro_th50_r'][0]
        self.elpetro_ba = self.drp['nsa_elpetro_ba'][0]
        self.elpetro_phi = self.drp['nsa_elpetro_phi'][0]
        self.sersic_r = self.drp['nsa_sersic_th50'][0]
        self.sersic_ba = self.drp['nsa_sersic_ba'][0]
        self.sersic_phi = self.drp['nsa_sersic_phi'][0]
        self.sersic_n = self.drp['nsa_sersic_n'][0]
        self.psf = self.drp['rfwhm'][0]
        self.z = self.drp['nsa_z'][0]
        self.c = const.c.to(u.km / u.s).value
        self.d = self.COSMO.luminosity_distance(self.z)
        self.arcsec2kpc = self.COSMO.kpc_comoving_per_arcmin(self.z).to(
            u.kpc / u.arcsec)
        self.repeat, self.alter = self.find_repeat(self)

    @property
    def target_range(self):
        # check the target type of primary and secondary
        # currently we still use the 'full fill the field of view' and 'other'
        # by give a resonable value, use with cautious
        mngtarg1 = self.drp['mngtarg1']
        if np.bitwise_and(mngtarg1, 2**10):
            Rrange = 1.5  # 1.5Re Primary
        elif np.bitwise_and(mngtarg1, 2**11):
            Rrange = 2.5  # 2.5Re Secondary
        elif np.bitwise_and(mngtarg1, 2**13):
            Rrange = 1.5  # full fill the field of view
        else:
            Rrange = 1.5  # Other
        return Rrange

    def find_repeat(self, recommend=True):
        # read the manga data/repeat_observation.txt to check and return all the
        # repeat observations
        # return the plateifu list, also return the recommend one if recommend
        # is True
        mangaid = self.mangaid
        txt = np.loadtxt(package_path + '/data/repeat_observations.txt',
                         skiprows=5,
                         dtype='str')
        target = txt[txt[:, 0] == mangaid]
        repeat_list = []
        if len(target) > 0:
            for i in range(1, 9, 2):
                plate = target[0][i]
                ifu = target[0][i + 1]
                if plate != '-1':
                    repeat_list.append(plate + '-' + ifu)
            if recommend:
                # pick all the ifu out and find the maximum
                ifu_list = list(
                    map(lambda s: re.match(r"\d+-(\d+)\d", s).group(1),
                        repeat_list))
                recommend_plateifu = np.array(repeat_list)[np.array(ifu_list)
                                                           == max(ifu_list)]
                # when serveral alternative, the first one is returned
                return repeat_list, recommend_plateifu[0]
        return repeat_list, None

    def image(self, ax=None, showImage=True):
        """return or show rgb-image
        """
        try:
            imagedata = mpimg.imread(self.image_file)
        except:
            print("{} image file doesn't exist!".format(self.plateifu))
            imagedata = np.zeros((2, 2))

        if ax == None:
            fig = plt.figure()
            ax = fig.add_subplot(111)
        ax.imshow(imagedata)
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        # set the 'show=False' when use it as a figure modifier
        if showImage:
            plt.show()

    def showdetail(self, showDRPInfo=True, showDAPInfo=True):
        """ show dap and drp detail of the target
        drp3qual see: https://trac.sdss.org/wiki/MANGA/TRM/TRM_MPL-5/metadata
        """
        if showDRPInfo:
            drp_qual_dict = dict({
                0: 'GOOD',
                1: 'RETIRED',
                2: 'BADDEPTH',
                4: 'SKYSUBBAD',
                8: 'HIGHSCAT',
                16: 'BADASTROM',
                32: 'VARIABLELSF',
                64: 'BADOMEGA',
                256: 'BADFLUX',
                512: 'BADPSF',
                2**30: 'CRITICAL'
            })
            drp3qual = self.drp['drp3qual'][0]
            print("****** DRP Imformation ******** ")
            print('The drp3qual is: {0}'.format(drp_qual_dict[drp3qual]))
            print('The image information:')
            print('elpetro_r = {0}, b/a = {1}, phi = {2}'.format(
                self.elpetro_r, self.elpetro_ba, self.elpetro_phi))
            print('The redshift is: {0}'.format(self.z))
            print('The distance is: {0}'.format(self.d))
            print('Re is: {0}'.format(self.arcsec2kpc * self.elpetro_r *
                                      u.arcsec))
            # print('LOG10(LOIII) is: {0}'.format(logO3))
        if showDAPInfo:
            dap_qual_dict = dict({
                0: 'GOOD',
                1: 'FORESTAR',
                2: 'BADZ',
                4: 'LINELESS',
                8: 'PPXFFAIL',
                16: 'SINGLEBIN',
                2**28: 'DRPCRIT',
                2**29: 'DAPCRIT',
                2**30: 'CRITICAL'
            })
            print("****** DAP Imformation ******** ")
            print('The DAP quality is: {0}'.format(
                dap_qual_dict[self.maps[0].header['DAPQUAL']]))