Exemple #1
0
def _check_transform(coords):
    # Coords is a shape.Subinterval
    wcsprm = Wcsprm()
    coord_array = np.array([[coords.lower, coords.upper]])
    sky_transform = wcsprm.p2s(coord_array, ORIGIN)
    pix_transform = wcsprm.s2p(sky_transform['world'], ORIGIN)
    transformed_coords = pix_transform['pixcrd']

    if not (transformed_coords[0][0] == coords.lower
            and transformed_coords[0][1] == coords.upper):
        raise ValueError(
            "Could not transform coordinates pixel to sky, sky to pixel")
Exemple #2
0
def _check_transform(coords):
    # Coords is a shape.Subinterval
    wcsprm = Wcsprm()
    coord_array = np.array([[coords.lower, coords.upper]])
    sky_transform = wcsprm.p2s(coord_array, ORIGIN)
    wcsprm.s2p(sky_transform['world'], ORIGIN)
Exemple #3
0
def _check_transform(lower, upper):
    wcsprm = Wcsprm()
    coord_array = np.array([[lower, upper]])
    sky_transform = wcsprm.p2s(coord_array, ORIGIN)
    wcsprm.s2p(sky_transform['world'], ORIGIN)
Exemple #4
0
def _check_transform(lower, upper):
    wcsprm = Wcsprm()
    coord_array = np.array([[lower, upper]])
    sky_transform = wcsprm.p2s(coord_array, ORIGIN)
    wcsprm.s2p(sky_transform['world'], ORIGIN)
Exemple #5
0
def main():
    """Perform photometry for the given file."""
    print("Program version: 0.2")
    StartTime = datetime.now()
    args = parseArguments()

    if (args.ignore_warnings):
        warnings.simplefilter('ignore', UserWarning)

    fits_image_filenames = args.input
    #print(fits_image_filenames)

    #for directories search for appropriate fits files
    if (os.path.isdir(fits_image_filenames[0])):
        print(
            "detected a directory. Will search for fits files in it that already have astrometry calibration and therefor contain _astro"
        )
        path = fits_image_filenames[0]
        fits_image_filenames = []
        for file in os.listdir(path):
            if file.endswith(".fits") and "_astro" in file:
                fits_image_filenames.append(path + "/" + file)
        print(fits_image_filenames)

    for fits_image_filename in fits_image_filenames:
        print("")
        print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
        print("> Photometry for {} ".format(fits_image_filename))

        with fits.open(fits_image_filename) as hdul:
            #print(hdul.info())
            if (args.verbose):
                print(
                    "if image is not at first position in the fits file the program will break later on"
                )
            #print(hdul[0].header)

            hdu = hdul[0]
            hdr = hdu.header

            image_or = hdul[0].data.astype(float)
            image = image_or - np.median(image_or)

        wcsprm = Wcsprm(hdr.tostring().encode(
            'utf-8'))  #everything else gave me errors with python 3

        #tranlating aperture into pixel:
        on_sky = wcsprm.p2s([[0, 0], [1, 1]], 0)["world"]
        px_scale = np.sqrt((on_sky[0, 0] - on_sky[1, 0])**2 +
                           (on_sky[0, 1] - on_sky[1, 1])**2)
        px_scale = px_scale * 60 * 60  #in arcsec
        aperture = args.aperture / px_scale  #aperture n pixel
        print("aperture")
        observation = find_sources(image, aperture)
        #print(observation)

        positions = (observation['xcenter'], observation['ycenter'])
        apertures = CircularAperture(positions, r=4.)

        #get rough coordinates
        coord = SkyCoord(wcsprm.crval[0],
                         wcsprm.crval[1],
                         unit=(u.deg, u.deg),
                         frame="icrs")

        #put in nice wrapper! with repeated tries and maybe try synchron!
        print(">Dowloading catalog data")
        #WCS.calc_footprint(header=None, undistort=True, axes=None, center=True)
        radius = u.Quantity(5, u.arcmin)  #should be enough for all images
        catalog_data, band_name, catalog_name, mag_sys = query.get_photometry_data(
            coord, radius, args.band, args.catalog)

        #throwing out blended sources (should be improved, TODO)

        apertures_catalog = CircularAperture(wcsprm.s2p(
            catalog_data[["ra", "dec"]], 1)['pixcrd'],
                                             r=5.)

        obs_matched, cat_matched, distances = register.find_matches_keep_catalog_info(
            observation, catalog_data, wcsprm, threshold=3)
        print("Found {} matches".format(obs_matched.shape[0]))
        MAG_CALC = True
        if (obs_matched.shape[0] == 0):
            MAG_CALC = False

        obs_matched["aperture_sum"]
        cat_matched[band_name]

        #mag = -2.5 log10(cts) + ZP
        ZP = -1 * (-2.5 * np.log10(obs_matched["aperture_sum"].values) -
                   cat_matched[band_name].values)

        #FIGURE OUT LINEAR RANGE TOTO
        ZP_median = np.median(ZP[~np.isnan(ZP)])
        new_magnitudes = -2.5 * np.log10(
            observation["aperture_sum"].values) + ZP_median

        ra = args.ra
        dec = args.dec
        if (args.name):
            targets = pd.read_csv("targets.csv")

            if ((targets["NAME"] == args.name).sum()):
                ra = targets.loc[targets["NAME"] == args.name, "RA"].values[0]
                dec = targets.loc[targets["NAME"] == args.name,
                                  "DEC"].values[0]
                print("For {} the following coordinates where found".format(
                    args.name))
                print("ra: {} dec: {}".format(ra, dec))
            else:
                print("{} not found".format(args.name))
        if (ra and dec):
            c_unknown = SkyCoord(ra, dec, unit=(u.deg, u.deg), frame="icrs")
            #print(observation[["xcenter", "ycenter"]].values)
            coordinats_obs = wcsprm.p2s(
                observation[["xcenter", "ycenter"]].values, 1)["world"]
            #print(coordinats_obs[17])
            c_obs = SkyCoord(coordinats_obs[:, 0],
                             coordinats_obs[:, 1],
                             unit=(u.deg, u.deg),
                             frame="icrs")
            #print(coordinats_obs)
            from astropy.coordinates import match_coordinates_sky
            idx, d2d, d3d = match_coordinates_sky(c_unknown, c_obs)
            cand_dups = d2d < 5 * u.arcsec

            mean, median, std = sigma_clipped_stats(image, sigma=3.0)
            ap_area = CircularAperture((2, 2), r=aperture)
            sig3_limiting_mag = -2.5 * np.log10(
                3 * std * np.sqrt(ap_area.area())) + ZP_median
            sig5_limiting_mag = -2.5 * np.log10(
                5 * std * np.sqrt(ap_area.area())) + ZP_median

            #######################
            #estimating the error via random apertures
            # print(std*np.sqrt(aperture_obj.area()))
            ran_x = 2 * aperture + np.random.random(1000) * (image.shape[0] -
                                                             4 * aperture)
            ran_y = 2 * aperture + np.random.random(1000) * (image.shape[0] -
                                                             4 * aperture)
            apertures_error = CircularAperture((ran_x, ran_y), r=aperture)
            phot_table = aperture_photometry(image, apertures_error)
            phot_table[
                'aperture_sum'].info.format = '%.8g'  # for consistent table output
            random_extractions = Table(phot_table).to_pandas()
            #print(np.mean(np.abs(random_extractions["aperture_sum"])))
            # print(np.median(np.abs(random_extractions["aperture_sum"])))
            # sig5_limiting_mag_apertures = -2.5*np.log10(5*np.median(np.abs(random_extractions["aperture_sum"]))) + ZP_median
            # print(sig5_limiting_mag_apertures)
            m, _, std_apertures = sigma_clipped_stats(
                random_extractions["aperture_sum"], sigma=3)
            print(std_apertures)
            sig5_limiting_mag_apertures = -2.5 * np.log10(
                5 * std_apertures) + ZP_median
            # print(sig5_limiting_mag_apertures)
            # print(np.mean(random_extractions.loc[random_extractions["aperture_sum"]<0,"aperture_sum"]))
            ###########################
            mag = 0
            if (cand_dups.sum() > 0):
                print(
                    "Position was given. Found {} sources in a 5 arcsec radius. Here is the magnitude:"
                    .format(cand_dups.sum()))
                print(new_magnitudes[idx])
                print("----")

                aperture_obj = CircularAperture(
                    ((observation["xcenter"].values)[idx],
                     (observation["ycenter"].values)[idx]),
                    r=aperture)
                #noise = (observation["aperture_sum"].values)[idx] /(std*np.sqrt(aperture_obj.area()))
                #https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
                #the std**2 is added, so we get a square root for the area!
                noise = (
                    observation["aperture_sum"].values)[idx] / std_apertures

                #print(noise_prob_wrong)
                #print(noise_prob_wrong2)

                print("We get a signal to noise of {} for the fixed aperture".
                      format(noise))

                mag = new_magnitudes[idx]
                mag_err = 2.5 * np.log10(1 + 1 / noise)
                text = "found detection in {} band,\n {:.4g} +- {:.2g} {}mag, {:.3g} S/N \n 5 sig limiting mag is {:.4g}".format(
                    args.band, mag, mag_err, mag_sys, noise,
                    sig5_limiting_mag_apertures)

            else:
                print(
                    "Position was given. No object was found at that position."
                )
                pix_unknown = wcsprm.s2p([[ra, dec]], 1)
                pix_unknown = pix_unknown['pixcrd']

                aperture_obj = CircularAperture(pix_unknown, r=aperture)
                phot_table = aperture_photometry(image, aperture_obj)
                phot_table[
                    'aperture_sum'].info.format = '%.8g'  # for consistent table output
                #print(phot_table)
                forced_phot = Table(phot_table).to_pandas()

                forced_mag = -2.5 * np.log10(
                    forced_phot["aperture_sum"].values) + ZP_median
                forced_mag = forced_mag[0]

                #noise = (forced_phot["aperture_sum"].values)[0] /(std*np.sqrt(aperture_obj.area()))
                noise = (forced_phot["aperture_sum"].values)[0] / std_apertures

                print("Forced photometry gives a magnitude of {}".format(
                    forced_mag))

                #local error
                # pix_unknown = pix_unknown[0]
                # mean_loc, median_loc, std_loc = sigma_clipped_stats(image[int(pix_unknown[0])-50:int(pix_unknown[0])+50,int(pix_unknown[1])-50:int(pix_unknown[1])+50], sigma=3.0)
                # ap_area= CircularAperture((2,2), r=aperture)
                # sig5_limiting_mag_local = -2.5*np.log10(5*std_loc*np.sqrt(ap_area.area())) + ZP_median
                # print((std_loc*np.sqrt(aperture_obj.area())))
                # print(sig5_limiting_mag_local)

                print("We get a signal to noise of {} for the fixed aperture".
                      format(noise))
                mag = forced_mag
                mag_err = 2.5 * np.log10(1 + 1 / noise)
                text = "forced photometry in {} band,\n {:.4g} +- {:.2g} {}mag, {:.3g} S/N \n 5 sig limiting mag is {:.4g} ".format(
                    args.band, mag, mag_err, mag_sys, noise,
                    sig5_limiting_mag_apertures)

        else:
            print(new_magnitudes)
            mag = 0

        obs_with_photometry = observation.copy()
        obs_with_photometry["mag"] = new_magnitudes

        #search for targeted object and print out its magnitude TODO

        if (ra and dec):
            plt.figure(figsize=(15, 8))
            plt.subplot(1, 2, 1)
            pix_unknown = wcsprm.s2p([[ra, dec]], 1)
            pix_unknown = pix_unknown['pixcrd']
            pix_unknown = pix_unknown[0]

            plt.xlabel("pixel x direction")
            plt.ylabel("pixel y direction")
            plt.title(text, size=20)
            #plt.imshow(image[int( pix_unknown[0])-30: int(pix_unknown[0])+30, int(pix_unknown[1])-30:int(pix_unknown[1])+30],cmap='Greys', origin='lower', norm=LogNorm())
            #plt.plot(30, 30, "+", color="red", markersize=20)
            plt.imshow(image, cmap='Greys', origin='lower', norm=LogNorm())
            plt.xlim(int(pix_unknown[0]) - 20, int(pix_unknown[0]) + 20)
            plt.ylim(int(pix_unknown[1]) - 20, int(pix_unknown[1]) + 20)
            aperture_obj.plot(color='blue',
                              lw=1.5,
                              alpha=0.5,
                              label=str(args.aperture) + " arcsec aperture")
            plt.plot(pix_unknown[0],
                     pix_unknown[1],
                     "+",
                     color="red",
                     markersize=20,
                     linewidth=10,
                     label="predicted target position")
            plt.legend(bbox_to_anchor=(1.1, -0.1), ncol=2)

            plt.subplot(1, 2, 2)
            plt.title("Photometric calibration with {} sources from {}".format(
                obs_matched.shape[0], catalog_name))
            plt.plot(cat_matched[band_name].values,
                     ZP,
                     "o",
                     markersize=20,
                     label="catalog objects")
            if (MAG_CALC):
                plt.ylim(np.nanmin(ZP) - 1, np.nanmax(ZP) + 1)
            else:
                plt.ylim(10, 30)
            if (mag):
                plt.axvline(x=mag, linewidth=4, color="green", label="target")
            plt.xlabel("catalog " + band_name + " magnitude")
            plt.ylabel(
                "Zeropoint (should be constant in linear part of the detector)"
            )
            plt.legend()
            outputname = fits_image_filename.replace('.fits', '')
            plt.savefig(outputname + "_ra{}dec{}.pdf".format(ra, dec))
            plt.show()

        else:

            plt.figure()
            plt.plot(cat_matched[band_name].values,
                     ZP,
                     "o",
                     markersize=20,
                     label="catalog objects")
            plt.ylim(np.nanmin(ZP) - 1, np.nanmax(ZP) + 1)
            if (mag):
                plt.axvline(x=mag, linewidth=4, color="green", label="target")
            plt.xlabel("catalog " + band_name + " magnitude")
            plt.ylabel(
                "Zeropoint (should be constant in linear part of the detector)"
            )
            plt.legend()
            plt.show()

        print("overall time taken")
        print(datetime.now() - StartTime)
        # if(args.show_images):
        #     plt.show()
    print("-- finished --")