def test_cross_validation_run_01(self): np.random.seed(42) inputs = np.random.uniform(-1, 1, 15).reshape(5, -1) outputs = np.random.uniform(0, 5, 10).reshape(5, -1) gradients = np.random.uniform(-1, 1, 30).reshape(5, 2, 3) ss = ActiveSubspaces(dim=1, method='exact') csv = CrossValidation(inputs=inputs, outputs=outputs, gradients=gradients, folds=2, subspace=ss) true_value = (8.91180601306311, 6.806790947903309) np.testing.assert_array_almost_equal(csv.run(), true_value)
def test_cross_validation_run_01(self): np.random.seed(42) inputs = np.random.uniform(-1, 1, 15).reshape(5, -1) outputs = np.random.uniform(0, 5, 10).reshape(5, -1) gradients = np.random.uniform(-1, 1, 30).reshape(5, 2, 3) ss = ActiveSubspaces() csv = CrossValidation(inputs=inputs, outputs=outputs, gradients=gradients, folds=2, subspace=ss) true_value = (8.186941403385733, 6.081926389368339) np.testing.assert_array_almost_equal(csv.run(), true_value)
def test_cross_validation_run_02(self): np.random.seed(42) inputs = np.random.uniform(-1, 1, 10).reshape(5, 2) outputs = np.random.uniform(0, 5, 10).reshape(5, 2) gradients = np.random.uniform(-1, 1, 20).reshape(5, 2, 2) fm = FeatureMap(distr='laplace', bias=np.random.uniform(-1, 1, 3), input_dim=2, n_features=3, params=np.zeros(1), sigma_f=outputs.var()) ss = KernelActiveSubspaces(dim=1, feature_map=fm) csv = CrossValidation(inputs=inputs, outputs=outputs, gradients=gradients, folds=2, subspace=ss) true_value = (2.26333743325053, 0.43902733603381605) np.testing.assert_array_almost_equal(csv.run(), true_value)