def cross_validate(self, X, y): binary = self.num_classes == 2 df, cv_scores = cross_validate_pipeline(pipeline=self.pipeline, X=X, y=y, binary=binary, n_folds=self.N_FOLDS) self.cv_judgment_metric = np.mean(df[self.judgment_metric]) self.cv_judgment_metric_stdev = np.std(df[self.judgment_metric]) return cv_scores
def cross_validate(self, X, y): # TODO: this is hacky. See https://github.com/HDI-Project/ATM/issues/48 binary = self.num_classes == 2 kwargs = {} if self.verbose_metrics: kwargs['include_curves'] = True if not binary: kwargs['include_per_class'] = True df, cv_scores = cross_validate_pipeline(pipeline=self.pipeline, X=X, y=y, binary=binary, n_folds=self.N_FOLDS, **kwargs) self.cv_judgment_metric = np.mean(df[self.judgment_metric]) self.cv_judgment_metric_stdev = np.std(df[self.judgment_metric]) self.mu_sigma_judgment_metric = (self.cv_judgment_metric - 2 * self.cv_judgment_metric_stdev) return cv_scores