Exemple #1
0
def read_csv(fname, temperature_limits=(-20, -0.5)):
    """
    Arguments
    ---------
    temerature_limits: tuple.
        The temperature reading has false readings in it which can cause porblems later"""
    df = pd.read_csv(fname, sep='\t')

    pandas_tools.ensure_column_exists(df, 'DateTime', _date_time_alts)
    pandas_tools.ensure_column_exists(df, 'Pressure_Pa', _pressure_alt)
    pandas_tools.ensure_column_exists(df, 'Temperature', _temp_alt)
    pandas_tools.ensure_column_exists(df, 'Relative_humidity', _RH_alt)
    # return df
    df.index = pd.Series(
        pd.to_datetime(df.DateTime, format='%Y-%m-%d %H:%M:%S'))
    # df['Pressure_Pa'] = df.PRESS
    # df['Temperature'] = df.AT
    # df['Relative_humidity'] = df.RH
    # df = df.drop('PRESS', axis=1)
    # df = df.drop('AT', axis=1)
    # df = df.drop('RH', axis=1)
    df = df.drop('DateTime', axis=1)

    df = df.sort_index()

    if temperature_limits:
        df = df[df.Temperature > temperature_limits[0]]
        df = df[temperature_limits[1] > df.Temperature]

    hk = timeseries.TimeSeries(df)
    return hk
Exemple #2
0
    def add_sun_elevetion(self, picco):
        """
        doc is not correct!!!

        This function uses telemetry data from the airplain (any timeseries including Lat and Lon) to calculate
        the sun's elevation. Based on the sun's elevation an airmass factor is calculated which the data is corrected for.

        Arguments
        ---------
        sun_intensities: Sun_Intensities_TS instance
        picco: any timeseries instance containing Lat and Lon
        """

        picco_t = timeseries.TimeSeries(
            picco.data.loc[:, ['Lat', 'Lon', 'Altitude']]
        )  # only Altitude, Lat and Lon
        sun_int_su = self.merge(picco_t)
        out = sun_int_su.get_sun_position()
        #     sun_int_su = sun_int_su.zoom_time(spiral_up_start, spiral_up_end)
        arrays = np.array([
            sun_int_su.data.index, sun_int_su.data.Altitude,
            sun_int_su.data.Solar_position_elevation
        ])
        tuples = list(zip(*arrays))
        index = pd.MultiIndex.from_tuples(
            tuples, names=['Time', 'Altitude', 'Sunelevation'])
        sun_int_su.data.index = index
        sun_int_su.data = sun_int_su.data.drop([
            'Altitude', 'Solar_position_elevation', 'Solar_position_azimuth',
            'Lon', 'Lat'
        ],
                                               axis=1)
        return sun_int_su
Exemple #3
0
def load_skybrighness(fname):
    keys = [460.3, 860.7, 550.4, 671.2]
    outt = SkyBrightDict()
    for k in keys:
        fn = fname + '_' + str(k) + '.csv'
        df = pd.read_csv(fn, index_col=0)
        df.columns = df.columns.astype(float)
        outt[float(k)] = timeseries.TimeSeries(df)
    return outt
Exemple #4
0
def read_radiosonde_csv(fname, cal):
    """reads a csv file and returns a TimeSeries

    Parameters
    ----------
    fname: str
        Name of file to be opend
    calibration: str or calibration instance
        Either pass the name of the file containing the calibration data, or a calibration instance.

    """

    df = pd.read_csv(fname, header=15)

    fkt = lambda x: x.lstrip(' ').replace(' ', '_')
    col_new = [fkt(i) for i in df.columns.values]
    df.columns = col_new

    time = df['date_[y-m-d_GMT]'] + df['time_[h:m:s_GMT]'] + '.' + df[
        'milliseconds'].astype(str)
    df.index = pd.Series(
        pd.to_datetime(time, format=time_tools.get_time_formate()))

    df[df == 99999.000] = np.nan

    alt = df['GPS_altitude_[km]'].copy()
    df['Altitude'] = alt * 1e3
    df.rename(columns={
        'GPS_latitude': 'Lat',
        'GPS_longitude': 'Lon'
    },
              inplace=True)

    bins = []
    for k in df.keys():
        if 'Bin' in k:
            bins.append(k)
    #         print(k)
#     print(bins)
    sd = df.loc[:, bins]

    hk = df.drop(bins, axis=1)

    hk = timeseries.TimeSeries(hk)
    hk.data.sort_index(inplace=True)
    hk.data.Altitude.interpolate(inplace=True)

    #     fname_cal = '/Users/htelg/data/POPS_calibrations/150622_china_UAV.csv'
    cal = calibration.read_csv(cal)
    ib = cal.get_interface_bins(20)
    sd = sizedistribution.SizeDist_TS(
        sd, ib['binedges_v_int'].values.transpose()[0], 'numberConcentration')
    return sd, hk
Exemple #5
0
def _read_csv(fname, norm2time=True, norm2flow=True):
    uhsas = _readFromFakeXLS(fname)
    #     return uhsas
    sd, hk = _separate_sizedist_and_housekeep(uhsas,
                                              norm2time=norm2time,
                                              norm2flow=norm2flow)
    hk = timeseries.TimeSeries(hk)
    #     return size_distr,hk
    bins = _get_bins(sd)
    #     return bins
    dist = sizedistribution.SizeDist_TS(sd, bins, "numberConcentration")
    return dist, hk
Exemple #6
0
    def split_revolutions(self,
                          peaks='l',
                          time_delta=(5, 20),
                          revolution_period=26.):
        """This function reorganizes the miniSASP data in a way that all sun transits are stacked on top of eachother
        and the time is translated to an angle"""

        ulr = self.copy()
        # star = 10000
        # till = 20000
        # ulr.data = ulr.data[star:till]

        if peaks == 's':
            peaks_s = ulr.find_peaks()
        elif peaks == 'l':
            peaks_s = ulr.find_peaks(which='long')

        time_delta_back = time_delta[0]
        time_delta_forward = time_delta[1]

        #     wls = ['460.3', '550.4',  '671.2', '860.7']
        photos = [
            ulr.data.PhotoA, ulr.data.PhotoB, ulr.data.PhotoC, ulr.data.PhotoD
        ]
        out_dict = {}
        for u, i in enumerate(ulr.channels):

            centers = peaks_s.data[str(i)].dropna().index.values

            #     res = []
            df = pd.DataFrame()
            PAl = photos[u]
            for e, center in enumerate(centers):
                # center = peaks_s.data['460.3'].dropna().index.values[1]
                start = center - np.timedelta64(time_delta_back, 's')
                end = center + np.timedelta64(time_delta_forward, 's')
                PAlt = PAl.truncate(before=start, after=end, copy=True)
                PAlt.index = PAlt.index - center
                PAlt = PAlt[
                    PAlt !=
                    0]  # For some reasons there are values equal to 0 which would screw up the averaging I intend to do
                #         res.append(PAlt)
                df[center] = PAlt.resample('50ms')
            df.index = (df.index.values -
                        np.datetime64('1970-01-01T00:00:00.000000000Z')
                        ) / np.timedelta64(1, 's')
            df.index = df.index.values / revolution_period * 2 * np.pi
            out = timeseries.TimeSeries(df.transpose())
            out_dict[i] = out
        return out_dict
Exemple #7
0
    def convert2timeseries(self, ts):
        """merges a vertical profile with a timeseries that contains height data
        and returns the a time series where the data of the vertical profile is interpolated
        along the time of the timeseries.

        Arguments
        ---------
        ts: timeseries"""
        hk_tmp = ts.convert2verticalprofile()
        data = hk_tmp.data[['TimeUTC']]
        cat_sort_int = pd.concat([data, self.data]).sort_index().interpolate()
        cat_sort_int = cat_sort_int.dropna()
        cat_sort_int.index = cat_sort_int.TimeUTC
        cat_sort_int = cat_sort_int.drop('TimeUTC', axis=1)
        return timeseries.TimeSeries(cat_sort_int)
Exemple #8
0
def _read_file(fname):
    picof = open(fname, 'r')
    header = picof.readline()
    picof.close()

    header = header.split(' ')
    header_cleaned = []

    for head in header:
        bla = head.replace('<', '').replace('>', '')
        where = bla.find('[')
        if where != -1:
            bla = bla[:where]
        header_cleaned.append(bla)

    data = pd.read_csv(fname,
                       names=header_cleaned,
                       sep=' ',
                       skiprows=1,
                       header=0)

    data.drop(range(20), inplace=True
              )  # dropping the first x lines, since the time is often dwrong

    time_series = data.Year.astype(str) + '-' + data.Month.apply(
        lambda x: '%02i' % x) + '-' + data.Day.apply(
            lambda x: '%02i' % x) + ' ' + data.Hours.apply(
                lambda x: '%02i' % x) + ':' + data.Minutes.apply(
                    lambda x: '%02i' % x) + ':' + data.Seconds.apply(
                        lambda x: '%05.2f' % x)
    data.index = pd.Series(
        pd.to_datetime(time_series, format=time_tools.get_time_formate()))

    _drop_some_columns(data)

    # convert from rad to deg
    data.Lat.values[:] = np.rad2deg(data.Lat.values)
    data.Lon.values[:] = np.rad2deg(data.Lon.values)

    data['Altitude'] = data['Height']
    data = data.drop('Height', axis=1)

    data.sort_index(inplace=True)

    return timeseries.TimeSeries(data, {'original header': header})