Exemple #1
0
def test_saved_iter_jVAE(model):
    X, _ = gen_image_data()
    X = X[:, 0, ...]
    vae_model = model((8, 8))
    vae_model.fit(X, training_cycles=4, batch_size=2, filename="jvae_metadict")
    num_iter = vae_model.kdict_["num_iter"]
    loaded_model = load_model("jvae_metadict.tar")
    assert_equal(num_iter, loaded_model.kdict_["num_iter"])
Exemple #2
0
def test_saved_optimizer_imspec():
    X, X_test = gen_image_data()
    y, y_test = gen_spectra()
    i2s_model = ImSpec((8, 8), (16, ))
    i2s_model.fit(X, y, X_test, y_test, training_cycles=4, batch_size=2)
    opt1 = i2s_model.optimizer
    loaded_model = load_model("model_metadict_final.tar")
    opt2 = loaded_model.optimizer
    compare_optimizers(opt1, opt2)
Exemple #3
0
def test_saved_optimizer_VAE(model):
    X, _ = gen_image_data()
    X = X[:, 0, ...]
    vae_model = model((8, 8))
    vae_model.fit(X, training_cycles=4, batch_size=2, filename="vae_metadict")
    opt1 = vae_model.optim
    loaded_model = load_model("vae_metadict.tar")
    opt2 = loaded_model.optim
    compare_optimizers(opt1, opt2)
Exemple #4
0
def test_io_imspec():
    X, X_test = gen_image_data()
    y, y_test = gen_spectra()
    i2s_model = ImSpec((8, 8), (16, ))
    i2s_model.fit(X, y, X_test, y_test, training_cycles=4, batch_size=2)
    loaded_model = load_model("model_metadict_final.tar")
    for p1, p2 in zip(loaded_model.net.parameters(),
                      i2s_model.net.parameters()):
        assert_array_equal(p1.detach().cpu().numpy(),
                           p2.detach().cpu().numpy())
Exemple #5
0
def test_io_segmentor(model):
    X, X_test = gen_image_data()
    y, y_test = gen_image_labels()
    segmodel = Segmentor(model, nb_classes=3)
    segmodel.fit(X, y, X_test, y_test, training_cycles=4, batch_size=2)
    loaded_model = load_model("model_metadict_final.tar")
    for p1, p2 in zip(loaded_model.net.parameters(),
                      segmodel.net.parameters()):
        assert_array_equal(p1.detach().cpu().numpy(),
                           p2.detach().cpu().numpy())
Exemple #6
0
def test_resume_training(model):
    X, _ = gen_image_data()
    X = X[:, 0, ...]
    vae_model = model((8, 8))
    vae_model.fit(X, training_cycles=4, batch_size=2, filename="vae_metadict")
    loss0 = abs(vae_model.loss_history["train_loss"][0])
    loaded_model = load_model("vae_metadict.tar")
    loaded_model.fit(X,
                     training_cycles=4,
                     batch_size=2,
                     filename="vae_metadict")
    loss1 = abs(loaded_model.loss_history["train_loss"][0])
    assert_(not np.isnan(loss1))
    assert_(loss1 < loss0)
Exemple #7
0
def test_io_VAE(model):
    X, _ = gen_image_data()
    X = X[:, 0, ...]
    vae_model = model((8, 8))
    vae_model.fit(X, training_cycles=4, batch_size=2, filename="vae_metadict")
    loaded_model = load_model("vae_metadict.tar")
    for p1, p2 in zip(loaded_model.encoder_net.parameters(),
                      vae_model.encoder_net.parameters()):
        assert_array_equal(p1.detach().cpu().numpy(),
                           p2.detach().cpu().numpy())
    for p1, p2 in zip(loaded_model.decoder_net.parameters(),
                      vae_model.decoder_net.parameters()):
        assert_array_equal(p1.detach().cpu().numpy(),
                           p2.detach().cpu().numpy())
Exemple #8
0
def test_saved_optimizer_segmentor(model):
    X, X_test = gen_image_data()
    y, y_test = gen_image_labels()
    segmodel = Segmentor(model, nb_classes=3)
    segmodel.fit(X,
                 y,
                 X_test,
                 y_test,
                 training_cycles=4,
                 batch_size=2,
                 filename="segmodel")
    opt1 = segmodel.optimizer
    loaded_model = load_model("segmodel_metadict_final.tar")
    opt2 = loaded_model.optimizer
    compare_optimizers(opt1, opt2)