def main(): from att_model_proxy import cmd_args seed = cmd_args.seed np.random.seed(seed) from att_model_proxy import AttMolProxy as ProxyModel from att_model_proxy import cmd_args model = ProxyModel() cal_valid_prior(model, cmd_args.latent_dim)
def main(): seed = 10960817 np.random.seed(seed) from att_model_proxy import AttMolProxy as ProxyModel from att_model_proxy import cmd_args model = ProxyModel() priors_file = cmd_args.save_dir + '/decoded_priors.txt' valid_prior = cal_valid_prior(model, cmd_args.latent_dim) save_decoded_priors(valid_prior, priors_file)
def main(): seed = 10960817 np.random.seed(seed) from att_model_proxy import AttMolProxy as ProxyModel from att_model_proxy import cmd_args model = ProxyModel() generation_file = cmd_args.save_dir + '/decoded_generation.txt' result = cal_valid_prior(model, cmd_args.latent_dim) save_decoded_priors(result, generation_file)
def main(): seed = 10960817 np.random.seed(seed) from att_model_proxy import AttMolProxy as ProxyModel from att_model_proxy import cmd_args model = ProxyModel() valid_prior = cal_valid_prior(model, cmd_args.latent_dim) valid_prior_save_file = cmd_args.saved_model + '-valid_prior.txt' print('valid prior:', valid_prior) with open(valid_prior_save_file, 'w') as fout: print('valid prior:', valid_prior, file=fout)
def main(): from att_model_proxy import AttMolProxy as ProxyModel from att_model_proxy import cmd_args # takes the model and calculate the decode results model = ProxyModel() # update where to save decoded_file = cmd_args.save_dir + '/decoded_results.txt' # reading smiles test set if cmd_args.smiles_file == 'qm9': smiles_list = readStr_qm9() elif cmd_args.smiles_file == 'zinc': smiles_list = read_zinc() XTE = smiles_list[0:nb_smiles] decoded_result = reconstruct(model, XTE) decoded_result = np.array(decoded_result) save_decoded_results(XTE, decoded_result, decoded_file)
def main(): from att_model_proxy import AttMolProxy as ProxyModel from att_model_proxy import cmd_args decode_result_save_file = cmd_args.saved_model + '-reconstruct_zinc_decode_result.csv' accuracy_save_file = cmd_args.saved_model + '-reconstruct_zinc_accuracy.txt' model = ProxyModel() decode_result = reconstruct(model, smiles) accuracy, junk = cal_accuracy(decode_result) print('accuracy:', accuracy, 'junk:', junk) save_result = True if save_result: with open(accuracy_save_file, 'w') as fout: print('accuracy:', accuracy, 'junk:', junk, file=fout) save_decode_result(decode_result, decode_result_save_file)