Exemple #1
0
 def __init__(self,
              inplanes,
              planes,
              stride=1,
              downsample=None,
              use_att=False,
              att_mode='ours'):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = nn.BatchNorm2d(planes)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.bn2 = nn.BatchNorm2d(planes)
     self.conv3 = nn.Conv2d(planes,
                            planes * self.expansion,
                            kernel_size=1,
                            bias=False)
     self.bn3 = nn.BatchNorm2d(planes * self.expansion)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
     self.use_att = use_att
     if use_att:
         assert att_mode in ['ours', 'cbam', 'se']
         if att_mode == 'ours':
             self.att = AttentionModule(planes * self.expansion)
         elif att_mode == 'cbam':
             self.att = CBAM(planes * self.expansion)
         elif att_mode == 'se':
             self.att = SELayer(planes * self.expansion)
Exemple #2
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 use_att=False,
                 att_mode='ours'):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.use_att = use_att

        if use_att:
            assert att_mode in ['ours', 'cbam', 'se']
            if att_mode == 'ours':
                self.att = AttentionModule(planes)
            elif att_mode == 'cbam':
                self.att = CBAM(planes)
            elif att_mode == 'se':
                self.att = SELayer(planes)
    def __init__(self,
                 num_class,
                 num_segments,
                 modality,
                 base_model,
                 new_length=None,
                 consensus_type='avg',
                 dropout=0.5):
        super(TSN, self).__init__()
        self.modality = modality
        self.num_segments = num_segments
        self.dropout = dropout
        self.base_model = base_model
        self.new_length = new_length
        self.consensus_type = consensus_type

        print(("""
                Initializing TSN with base model: P3D.
                TSN Configurations:
                    input_modality:     {}
                    num_segments:       {}
                    new_length:         {}
                    consensus_module:   {}
                    dropout_ratio:      {}
                """.format(self.modality, self.num_segments, self.new_length,
                           consensus_type, self.dropout)))

        self.attention = AttentionModule()

        self.avgpool = nn.AvgPool3d(kernel_size=(self.num_segments, 5, 5),
                                    stride=1)
        self.dropout = nn.Dropout(p=dropout)
        self.fc = nn.Linear(2048, 101)
Exemple #4
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 use_att=False,
                 att_mode='ours'):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block,
                                       64,
                                       layers[0],
                                       stride=1,
                                       use_att=False,
                                       att_mode=att_mode)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       use_att=False,
                                       att_mode=att_mode)
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       use_att=False,
                                       att_mode=att_mode)
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       use_att=False,
                                       att_mode=att_mode)
        self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)

        self.final_fc = nn.Linear(512 * block.expansion, num_classes)

        self.use_att = use_att
        if use_att:
            self.att = AttentionModule(512 * block.expansion)
        self.num_classes = num_classes
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)