def __init__(self, params, train, name=None): super(DecoderStack, self).__init__(name=name) # 0 ----------------------- self_attention_layer_0 = attention_layer.SelfAttention(params["hidden_size"], params["num_heads"], params["attention_dropout"], train, n="Decoder self-attention 0", name="dec-selfatt-0") enc_dec_attention_layer_0 = attention_layer.Attention(params["hidden_size"], params["num_heads"], params["attention_dropout"], train, n="Decoder-encoder attention 0", name="dec-enc-0") feed_forward_network_0 = ffn_layer.FeedFowardNetwork(params["hidden_size"], params["filter_size"], params["relu_dropout"], train, params["allow_ffn_pad"], name="dec-ffn-0") self.self_attention_wrapper_0 = PrePostProcessingWrapper(self_attention_layer_0, params, train, name="dec-selfattwrap-0") self.enc_dec_attention_wrapper_0 = PrePostProcessingWrapper(enc_dec_attention_layer_0, params, train, name="dec-encwrap-0") self.feed_forward_wrapper_0 = PrePostProcessingWrapper(feed_forward_network_0, params, train, name="dec-ffnwrap-0") # 1 ----------------------- self_attention_layer_1 = attention_layer.SelfAttention(params["hidden_size"], params["num_heads"], params["attention_dropout"], train, n="Decoder self-attention 1", name="dec-selfatt-1") enc_dec_attention_layer_1 = attention_layer.Attention(params["hidden_size"], params["num_heads"], params["attention_dropout"], train, n="Decoder-encoder attention 1", name="dec-enc-1") feed_forward_network_1 = ffn_layer.FeedFowardNetwork(params["hidden_size"], params["filter_size"], params["relu_dropout"], train, params["allow_ffn_pad"], name="dec-ffn-1") self.self_attention_wrapper_1 = PrePostProcessingWrapper(self_attention_layer_1, params, train, name="dec-selfattwrap-1") self.enc_dec_attention_wrapper_1 = PrePostProcessingWrapper(enc_dec_attention_layer_1, params, train, name="dec-encwrap-1") self.feed_forward_wrapper_1 = PrePostProcessingWrapper(feed_forward_network_1, params, train, name="dec-ffnwrap-1") # 2 ----------------------- self_attention_layer_2 = attention_layer.SelfAttention(params["hidden_size"], params["num_heads"], params["attention_dropout"], train, n="Decoder self-attention 2", name="dec-selfatt-2") enc_dec_attention_layer_2 = attention_layer.Attention(params["hidden_size"], params["num_heads"], params["attention_dropout"], train, n="Decoder-encoder attention 2", name="dec-enc-2") feed_forward_network_2 = ffn_layer.FeedFowardNetwork(params["hidden_size"], params["filter_size"], params["relu_dropout"], train, params["allow_ffn_pad"], name="dec-ffn-2") self.self_attention_wrapper_2 = PrePostProcessingWrapper(self_attention_layer_2, params, train, name="dec-selfattwrap-2") self.enc_dec_attention_wrapper_2 = PrePostProcessingWrapper(enc_dec_attention_layer_2, params, train, name="dec-encwrap-2") self.feed_forward_wrapper_2 = PrePostProcessingWrapper(feed_forward_network_2, params, train, name="dec-ffnwrap-2") # self.output_normalization = layer_norm.LayerNormalization(params["hidden_size"], name="dec-norm")
def build(self, input_shape): """Builds the decoder stack.""" params = self.params self_attention_layer = attention_layer.SelfAttention( params["hidden_size"], params["num_heads"], params["attention_dropout"]) enc_dec_attention_layer = attention_layer.Attention( params["hidden_size"], params["num_heads"], params["attention_dropout"]) feed_forward_network = feed_forward_layer.FeedForwardNetwork( params["hidden_size"], params["filter_size"], params["relu_dropout"], 0.02) self.self_attention_layer = PrePostProcessingWrapper(self_attention_layer, params) self.enc_dec_attention_layer = PrePostProcessingWrapper(enc_dec_attention_layer, params) self.feed_forward_network = PrePostProcessingWrapper(feed_forward_network, params) self.output_normalization = LayerNormalization(params["hidden_size"]) super(DecoderStack, self).build(input_shape)
def build(self, input_shape): params = self.params for _ in range(params['num_hidden_layers']): self_attention_layer = attention_layer.SelfAttention( params['hidden_size'], params['num_heads'], params['attention_dropout']) enc_dec_attention_layer = attention_layer.Attention( params['hidden_size'], params['num_heads'], params['attention_dropout']) feed_forward_network = ffn_layer.FeedForwardNetwork( params['hidden_size'], params['filter_size'], params['relu_dropout']) self.layers.append([ PrePostProcessingWrapper(self_attention_layer, params), PrePostProcessingWrapper(enc_dec_attention_layer, params), PrePostProcessingWrapper(feed_forward_network, params) ]) self.output_normalization = tf.keras.layers.LayerNormalization( epsilon=1e-6, dtype='float32') super(DecoderStack, self).build(input_shape)
def __init__(self, params, train): super(DecoderStack, self).__init__() self.layers = [] for _ in range(params["num_hidden_layers"]): self_attention_layer = attention_layer.SelfAttention( params["hidden_size"], params["num_heads"], params["attention_dropout"], train) enc_dec_attention_layer = attention_layer.Attention( params["hidden_size"], params["num_heads"], params["attention_dropout"], train) feed_forward_network = ffn_layer.FeedFowardNetwork( params["hidden_size"], params["filter_size"], params["relu_dropout"], train, params["allow_ffn_pad"]) self.layers.append([ PrePostProcessingWrapper(self_attention_layer, params, train), PrePostProcessingWrapper(enc_dec_attention_layer, params, train), PrePostProcessingWrapper(feed_forward_network, params, train) ]) self.output_normalization = LayerNormalization(params["hidden_size"])