def get_file_bpm(path, params=None):
    """ Calculate the beats per minute (bpm) of a given file.
        path: path to the file
        param: dictionary of parameters
    """
    if params is None:
        params = {}
    # default:
    samplerate, win_s, hop_s = 44100, 1024, 512
    if 'mode' in params:
        if params.mode in ['super-fast']:
            # super fast
            samplerate, win_s, hop_s = 4000, 128, 64
        elif params.mode in ['fast']:
            # fast
            samplerate, win_s, hop_s = 8000, 512, 128
        elif params.mode in ['default']:
            pass
        else:
            print("unknown mode {:s}".format(params.mode))
    # manual settings
    if 'samplerate' in params:
        samplerate = params.samplerate
    if 'win_s' in params:
        win_s = params.win_s
    if 'hop_s' in params:
        hop_s = params.hop_s

    s = source(path, samplerate, hop_s)
    samplerate = s.samplerate
    o = tempo("specdiff", win_s, hop_s, samplerate)
    # List of beats, in samples
    beats = []
    # Total number of frames read
    total_frames = 0

    while True:
        samples, read = s()
        is_beat = o(samples)
        if is_beat:
            this_beat = o.get_last_s()
            beats.append(this_beat)
            #if o.get_confidence() > .2 and len(beats) > 2.:
            #    break
        total_frames += read
        if read < hop_s:
            break

    def beats_to_bpm(beats, path):
        # if enough beats are found, convert to periods then to bpm
        if len(beats) > 1:
            if len(beats) < 4:
                print("few beats found in {:s}".format(path))
            bpms = 60./diff(beats)
            return median(bpms)
        else:
            print("not enough beats found in {:s}".format(path))
            return 0

    return beats_to_bpm(beats, path)
 def __init__(self, filename, samplerate=44100, win_s=1024, hop_s=512):
     '''
     
     '''
     self.source = source(filename, samplerate, hop_s)
     self.win_s = win_s
     self.hop_s = hop_s
Exemple #3
0
  def onset(self, **options):
    onsetAlgorithm = options.get("onsetAlgorithm") or "default"
    onsetThreshold = options.get("onsetThreshold") or -90

    sourceBuffer = source(self.audioFilename, self.samplerate, self.hopSize)

    onsetSampler = aubio_onset(onsetAlgorithm, self.fftWindowSize, self.hopSize, self.samplerate)
    # onsetSampler = aubio_level_detection(-70)

    # list of onsets, in samples
    onsets = []
    timings = []
    frames = []

    # total number of frames read
    totalFrames = 0
    while True:
      samples, read = sourceBuffer()

      if onsetSampler(samples):
        # print "%f" % onsetSampler.get_last_s()
        timings.append(onsetSampler.get_last_s())
        frames += [totalFrames]
        onsets.append(onsetSampler.get_last())


      totalFrames += read

      if read < self.hopSize: break

    return {
      "timings": timings,
      "frames": frames,
      "onsets": onsets
    }
Exemple #4
0
def pitches(filename, samplerate=None, downsample=1):
    if samplerate is None:
        samplerate = 44100 / downsample

    win_s = 4096 / downsample # fft size
    hop_s = 512  / downsample # hop size

    s = aubio.source(filename, samplerate, hop_s)
    samplerate = s.samplerate

    tolerance = 0.8

    pitch_o = aubio.pitch("yin", win_s, hop_s, samplerate)
    pitch_o.set_unit("midi")
    pitch_o.set_tolerance(tolerance)

    pitches = []
    confidences = []

# total number of frames read
    total_frames = 0
    while True:
        samples, read = s()
        pitch = pitch_o(samples)[0]
        #pitch = int(round(pitch))
        confidence = pitch_o.get_confidence()
        #if confidence < 0.8: pitch = 0.
        #print "%f %f %f" % (total_frames / float(samplerate), pitch, confidence)
        pitches += [pitch]
        confidences += [confidence]
        total_frames += read
        if read < hop_s: break

    return samples, pitches, confidences, total_frames
Exemple #5
0
  def mfcc(self, **options):
    nFilters = options.get("nFilters") or 40  # must be 40 for mfcc
    nCoeffs = options.get("nCoefs") or 13

    sourceBuffer = source(self.audioFilename, self.samplerate, self.hopSize)

    pvocBuffer = pvoc(self.fftWindowSize, self.hopSize)
    mfccBuffer = mfcc(self.fftWindowSize, nFilters, nCoeffs, self.samplerate)

    mfccs = np.zeros([nCoeffs, ])

    timings = []
    frames = []

    totalFrames = 0
    while True:
      samples, read = sourceBuffer()
      spec = pvocBuffer(samples)
      mfcc_out = mfccBuffer(spec)
      mfccs = np.vstack((mfccs, mfcc_out))

      totalFrames += read
      timings += [float(totalFrames) / self.samplerate]
      frames += [totalFrames]

      if read < self.hopSize: break

    return mfccs
def getPitch(filename):
    from aubio import pitch
    downsample = 1
    samplerate = 44100 / downsample
    win_s = 1024 / downsample # fft size

    hop_s = 256/ downsample # hop size
    s = source(filename, samplerate, hop_s)
    samplerate = s.samplerate
    tolerance = 0.8

    pitch_o = pitch("yin", win_s, hop_s, samplerate)
    pitch_o.set_unit("midi")
    pitch_o.set_tolerance(tolerance)
    total_frames = 0
    pitches = []
    confidences=[]
    while True:
        samples, read = s()
        pitch = pitch_o(samples)[0]
        confidence = pitch_o.get_confidence()
        confidences+=[confidence]
        pitches += [pitch]
        total_frames += read
        if read < hop_s: break
    pitches = array(pitches[1:])
    confidences = array(confidences[1:])
    cleaned_pitches = pitches
    cleaned_pitches = ma.masked_where(confidences < tolerance, cleaned_pitches,copy=False)
    cleaned_pitches = cleaned_pitches[~cleaned_pitches.mask]

    return max(cleaned_pitches)
	def extract_beats (self):

		samplerate, win_s, hop_s = 44100, 1024, 512
		s = aubio.source('good_test.wav', 44100, 512)

		o = aubio.tempo("specdiff", self.win_s, self.hop_s, self.rate)
		self._beats = []
		total_frames = 0
		i = 0
		print "Starting extraction ..."
		while True:
			samples = self._waveform [i*self.hop_s:(i+1)*self.hop_s]
			samples = np.float32(samples)
			is_beat = o (samples)

			if is_beat:
				this_beat = o.get_last_s()
				print this_beat
				self._beats.append(this_beat)
			i += 1
			if (i+1)*self.hop_s > len(self._waveform): break

		#bpms = 60./np.diff(self._beats)
		print "Beats:"
		print self._beats
		print "--- BMP:"
		b = 60./np.diff(self._beats)	
		self._bpm = np.median(b)
		print self._bpm
Exemple #8
0
def tempo_ext(filename):
    win_s = 512  # fft size
    hop_s = win_s / 2  # hop size

    samplerate = 11000

    s = source(filename, samplerate, hop_s)
    samplerate = s.samplerate
    o = tempo("default", win_s, hop_s, samplerate)

    # tempo detection delay, in samples
    # default to 4 blocks delay to catch up with
    delay = 4.0 * hop_s

    # list of beats, in samples
    beats = []

    # total number of frames read
    total_frames = 0
    while True:
        samples, read = s()
        is_beat = o(samples)
        if is_beat:
            this_beat = int(total_frames - delay + is_beat[0] * hop_s)
            # print "%f" % (this_beat / float(samplerate))
            beats.append(this_beat)
        total_frames += read
        if read < hop_s:
            break

    # convert samples to seconds
    beats = map(lambda x: x / float(samplerate), beats)

    bpms = [60.0 / (b - a) for a, b in zip(beats[:-1], beats[1:])]
    print "BPM: ", median(bpms) * 4
def getBmp(path, params={}):
	try:
		win_s = params['win_s']
		samplerate = params['samplerate']
		hop_s = params['hop_s']
	except:
		#default:
		samplerate, win_s, hop_s = 44100, 1024, 512

	s = source(path, samplerate, hop_s)
	samplerate = s.samplerate
	o = tempo("specdiff", win_s, hop_s, samplerate)

	#list of beats, in samples
	beats = []
	#Total number of frames read
	total_frames = 0

	while True:
		samples, read = s()
		is_beat = o(samples)
		if is_beat:
			this_beat = o.get_last_s()
			beats.append(this_beat)
		total_frames += read
		if read < hop_s:
			break

	bpms = 60./np.diff(beats)
	b = np.median(bpms)
	return b
Exemple #10
0
 def test_samplerate_hopsize(self, hop_size, samplerate, soundfile):
     try:
         f = source(soundfile, samplerate, hop_size)
     except RuntimeError as e:
         self.skipTest('failed opening with hop_s = {:d}, samplerate = {:d} ({:s})'.format(hop_size, samplerate, str(e)))
     assert f.samplerate != 0
     self.read_from_source(f)
Exemple #11
0
 def test_close_file_twice(self):
     samplerate = 0 # use native samplerate
     hop_size = 256
     for p in list_of_sounds:
         f = source(p, samplerate, hop_size)
         f.close()
         f.close()
Exemple #12
0
def aubiodata(filename, onsetType, threshold, silence):
	win_s = 512                 # fft size
	hop_s = win_s / 2           # hop size
	samplerate = 0		    # Just an initial setting
#	threshold = 0.8
#	silence = -10

	s = source(filename, samplerate, hop_s)
	samplerate = s.samplerate

	o = onset(onsetType, win_s, hop_s, samplerate)
 	o.set_threshold(threshold)
 	o.set_silence(silence)
	# list of onsets, in seconds
	onsets = []

	# total number of frames read
	total_frames = 0
	while True:
	    samples, read = s()
	    if o(samples):
	#        print "%f" % o.get_last_s()
	        onsets.append(o.get_last_s())
	    total_frames += read
	    if read < hop_s: break


	# 'onsets' holds, at each entry, the time where an onset is detected (in seconds).
	return onsets
Exemple #13
0
def apply_filter(path):
    from aubio import source, sink, digital_filter
    from os.path import basename, splitext

    # open input file, get its samplerate
    s = source(path)
    samplerate = s.samplerate

    # create an A-weighting filter
    f = digital_filter(7)
    f.set_a_weighting(samplerate)
    # alternatively, apply another filter

    # create output file
    o = sink("filtered_" + splitext(basename(path))[0] + ".wav", samplerate)

    total_frames = 0
    while True:
        samples, read = s()
        filtered_samples = f(samples)
        o(filtered_samples, read)
        total_frames += read
        if read < s.hop_size: break

    duration = total_frames / float(samplerate)
    print ("read {:s}".format(s.uri))
    print ("applied A-weighting filtered ({:d} Hz)".format(samplerate))
    print ("wrote {:s} ({:.2f} s)".format(o.uri, duration))
Exemple #14
0
def getPitchDiff(path):
	downsample = 1
	samplerate = 44100 / downsample

	win_s = 4096 / downsample # fft size
	hop_s = 512  / downsample # hop size

	s = source(path, samplerate, hop_s)
	samplerate = s.samplerate

	tolerance = 0.8

	pitch_o = aubio.pitch("yin", win_s, hop_s, samplerate)
	pitch_o.set_unit("midi")
	pitch_o.set_tolerance(tolerance)

	pitches = []
	confidences = []

	# total number of frames read
	total_frames = 0
	while True:
	    samples, read = s()
	    pitch = pitch_o(samples)[0]
	    #pitch = int(round(pitch))
	    confidence = pitch_o.get_confidence()
	    #if confidence < 0.8: pitch = 0.
	    #print "%f %f %f" % (total_frames / float(samplerate), pitch, confidence)
	    pitches += [pitch]
	    confidences += [confidence]
	    total_frames += read
	    if read < hop_s: break
	return np.median(np.fabs(np.diff(pitches)))
def vocoder(file_id):
	
	in_file = '/tmp/don_robot/output/' + file_id + ".mp3"
	out_file = '/tmp/don_robot/output/' + file_id + "-voc.mp3"

	samplerate = 44100
	f = source(in_file, samplerate, 256)
	g = sink(out_file, samplerate)
	total_frames, read = 0, 256

	win_s = 512                          # fft size
	hop_s = win_s // 2                   # hop size
	pv = pvoc(win_s, hop_s)              # phase vocoder

	while read:
		samples, read = f()
		spectrum = pv(samples)           # compute spectrum
		spectrum.norm *= .5             # reduce amplitude a bit .8
		spectrum.phas[:] = 0.            # zero phase
		new_samples = pv.rdo(spectrum)   # compute modified samples
		g(new_samples, read)             # write to output
 		total_frames += read

	format_str = "read {:d} samples from {:s}, written to {:s}"
	print(format_str.format(total_frames, f.uri, g.uri))
	return out_file
Exemple #16
0
def getMelEnergy(path):
	win_s = 512 		#fft size
	hop_s = win_s / 4 	#hop size

	samplerate = 0
	s = source(path, samplerate, hop_s)
	samplerate = s.samplerate

	pv = pvoc(win_s, hop_s)
	f = filterbank(40, win_s)
	f.set_mel_coeffs_slaney(samplerate)

	energies = np.zeros((40, ))
	o = {}

	total_frames = 0
	downsample = 2

	while True:
		samples, read = s()
		fftgrain = pv(samples)
		new_energies = f(fftgrain)
		energies = np.vstack([energies, new_energies])
		total_frames += read
		if read < hop_s:
			break
	return energies
Exemple #17
0
def get_waveform_plot(filename, samplerate = 0, block_size = 4096, ax = None, downsample = 2**4):
    import matplotlib.pyplot as plt
    if not ax:
        fig = plt.figure()
        ax = fig.add_subplot(111)
    hop_s = block_size

    allsamples_max = zeros(0,)
    downsample = downsample  # to plot n samples / hop_s

    a = source(filename, samplerate, hop_s)            # source file
    if samplerate == 0: samplerate = a.samplerate

    total_frames = 0
    while True:
        samples, read = a()
        # keep some data to plot it later
        new_maxes = (abs(samples.reshape(hop_s//downsample, downsample))).max(axis=0)
        allsamples_max = hstack([allsamples_max, new_maxes])
        total_frames += read
        if read < hop_s: break
    allsamples_max = (allsamples_max > 0) * allsamples_max
    allsamples_max_times = [ ( float (t) / downsample ) * hop_s for t in range(len(allsamples_max)) ]

    ax.plot(allsamples_max_times,  allsamples_max, '-b')
    ax.plot(allsamples_max_times, -allsamples_max, '-b')
    ax.axis(xmin = allsamples_max_times[0], xmax = allsamples_max_times[-1])

    set_xlabels_sample2time(ax, allsamples_max_times[-1], samplerate)
    return ax
Exemple #18
0
def apply_filter(path, target):
    # open input file, get its samplerate
    s = aubio.source(path)
    samplerate = s.samplerate

    # create an A-weighting filter
    f = aubio.digital_filter(7)
    f.set_a_weighting(samplerate)

    # create output file
    o = aubio.sink(target, samplerate)

    total_frames = 0
    while True:
        # read from source
        samples, read = s()
        # filter samples
        filtered_samples = f(samples)
        # write to sink
        o(filtered_samples, read)
        # count frames read
        total_frames += read
        # end of file reached
        if read < s.hop_size:
            break

    # print some info
    duration = total_frames / float(samplerate)
    input_str = "input: {:s} ({:.2f} s, {:d} Hz)"
    output_str = "output: {:s}, A-weighting filtered ({:d} frames total)"
    print(input_str.format(s.uri, duration, samplerate))
    print(output_str.format(o.uri, total_frames))
Exemple #19
0
 def test_wrong_seek_too_large(self):
     f = source(self.default_test_sound)
     try:
         with self.assertRaises(ValueError):
             f.seek(f.duration + f.samplerate * 10)
     except AssertionError:
         self.skipTest('seeking after end of stream failed raising ValueError')
Exemple #20
0
def read_pitch(filename, chunk):
    win_s = chunk # fft size
    hop_s = win_s # hop size

    samplerate = 0
    # if len( sys.argv ) > 2: samplerate = int(sys.argv[2])

    s = source(filename, samplerate, hop_s)
    samplerate = s.samplerate

    pitch_o = pitch("default", win_s, hop_s, samplerate)
    pitch_o.set_unit("freq")

    pitches = []
    # times = []

    # total number of frames read
    total_frames = 0
    while True:
        samples, read = s()
        cur_pitch = pitch_o(samples)[0]
        # print "%f %f" % (total_frames / float(samplerate), pitch)
        pitches.append(Pitch(cur_pitch, total_frames / float(samplerate)))
        total_frames += read
        if read < hop_s: break

    # print pitches
    if len(pitches) == 0: return None
    return pitches
Exemple #21
0
def get_file_bpm(self, path):
    """ Calculate the beats per minute (bpm) of a given file.
        path: path to the file
        buf_size    length of FFT
        hop_size    number of frames between two consecutive runs
        samplerate  sampling rate of the signal to analyze
    """

    samplerate, buf_size, hop_size = bpm_slider_settings[
        BPMOptionsPage.config.setting["bpm_slider_parameter"]]
    mediasource = source(path.encode("utf-8"), samplerate, hop_size)
    samplerate = mediasource.samplerate
    beattracking = tempo("specdiff", buf_size, hop_size, samplerate)
    # List of beats, in samples
    beats = []
    # Total number of frames read
    total_frames = 0

    while True:
        samples, read = mediasource()
        is_beat = beattracking(samples)
        if is_beat:
            this_beat = beattracking.get_last_s()
            beats.append(this_beat)
        total_frames += read
        if read < hop_size:
            break

    # Convert to periods and to bpm
    bpms = 60. / diff(beats)
    return median(bpms)
Exemple #22
0
def decoder(fname):
    s = aubio.source(fname, samplerate, hop)


    frames = []

    while True:
        samples, reads = s()
        if reads == 0:
            break
        frames.extend(samples[0:reads])

    #print len(frames)
    max_amp = max(frames)
    #print max_amp


    for i in range(0, len(frames)):
        frames[i] = frames[i]/max_amp

    #print max(frames)


    start = 0
    while frames[start] < 0.3:
        start = start+1
    end = len(frames)-1
    while frames[end] < 0.3:
        end = end-1

    samples = frames[start:end]





    #print max(samples)

    x = 0

    #print len(samples)
    freqs = []
    while x + 2048 < len(samples):
        freqs.append(find_freq(samples[x+20:x+20 + 2048]))
#        print "-----------"
        x = x + 2205    
#    print freqs
        
    base64 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
    bits = ''   

    for x in freqs:
        y = x[0]
        z = x[1]
        b64 = (y-400)/50
        b642 = (z-4500)/50 
        bits = bits + base64[b64] + base64[b642]
#    print len(bits)*6/8
    return bits
 def test_wrong_samplerate(self):
     for p in list_of_sounds:
         try:
             f = source(p, -1)
         except ValueError, e:
             pass
         else:
             self.fail('negative samplerate does not raise ValueError')
 def test_wrong_hop_size(self):
     for p in list_of_sounds:
         try:
             f = source(p, 0, -1)
         except ValueError, e:
             pass
         else:
             self.fail('negative hop_size does not raise ValueError')
Exemple #25
0
 def test_wrong_hop_size(self):
     for p in list_of_sounds:
         try:
             f = source(p, 0, -1)
         except Exception, e:
             print e
         else:
             self.fail('does not fail with wrong hop_size %d' % f.hop_size)
Exemple #26
0
 def test_wrong_samplerate(self):
     for p in list_of_sounds:
         try:
             f = source(p, -1)
         except Exception, e:
             print e
         else:
             self.fail('does not fail with wrong samplerate')
def open_audio_source(input_wav):
    """
    Open the audio source file `input_wav` and return a tuple with
    - the aubio source object
    - its samplerate
    """
    s = aubio.source(input_wav, 0, HOP_S)
    samplerate = s.samplerate
    return s, samplerate
Exemple #28
0
 def test_duration(self, p):
     total_frames = 0
     f = source(p)
     duration = f.duration
     while True:
         _, read = f()
         total_frames += read
         if read < f.hop_size: break
     self.assertEqual(duration, total_frames)
Exemple #29
0
def analyzePitch(grain):
    s = source(grain["file"], int(grain["sampleRate"]), int(float(grain["frameCount"])))
    samplerate = s.samplerate
    tolerance = 0.8
    pitch_out = pitch("yin", int(float(grain["frameCount"])), int(float(grain["frameCount"])), samplerate)
    samples, read = s()
    pitchFreq = pitch_out(samples)[0].item() 
    del s 
    return pitchFreq
def get_spectrogram(filename, samplerate=0):
    win_s = 512  # fft window size
    hop_s = win_s // 2  # hop size
    fft_s = win_s // 2 + 1  # spectrum bins

    a = source(filename, samplerate, hop_s)  # source file
    if samplerate == 0: samplerate = a.samplerate
    pv = pvoc(win_s, hop_s)  # phase vocoder
    specgram = zeros([0, fft_s], dtype=float_type)  # numpy array to store spectrogram

    # analysis
    while True:
        samples, read = a()  # read file
        specgram = vstack((specgram, pv(samples).norm))  # store new norm vector
        if read < a.hop_size: break

    # plotting
    fig = plt.imshow(log10(specgram.T + .001), origin='bottom', aspect='auto', cmap=plt.cm.gray_r)
    ax = fig.axes
    ax.axis([0, len(specgram), 0, len(specgram[0])])
    # show axes in Hz and seconds
    time_step = hop_s / float(samplerate)
    total_time = len(specgram) * time_step
    outstr = "total time: %0.2fs" % total_time
    print(outstr + ", samplerate: %.2fkHz" % (samplerate / 1000.))
    n_xticks = 10
    n_yticks = 10

    def get_rounded_ticks(top_pos, step, n_ticks):
        top_label = top_pos * step
        # get the first label
        ticks_first_label = top_pos * step / n_ticks
        # round to the closest .1
        ticks_first_label = round(ticks_first_label * 10.) / 10.
        # compute all labels from the first rounded one
        ticks_labels = [ticks_first_label * n for n in range(n_ticks)] + [top_label]
        # get the corresponding positions
        ticks_positions = [ticks_labels[n] / step for n in range(n_ticks)] + [top_pos]
        # convert to string
        ticks_labels = ["%.1f" % x for x in ticks_labels]
        # return position, label tuple to use with x/yticks
        return ticks_positions, ticks_labels

    # apply to the axis
    x_ticks, x_labels = get_rounded_ticks(len(specgram), time_step, n_xticks)
    y_ticks, y_labels = get_rounded_ticks(len(specgram[0]), (samplerate / 1000. / 2.) / len(specgram[0]), n_yticks)
    ax.set_xticks(x_ticks)
    ax.set_yticks(y_ticks)
    ax.set_xticklabels(x_labels)
    ax.set_yticklabels(y_labels)
    ax.set_ylabel('Frequency (kHz)')
    ax.set_xlabel('Time (s)')
    ax.set_title(os.path.basename(filename))
    for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
                 ax.get_xticklabels() + ax.get_yticklabels()):
        item.set_fontsize('x-small')
    return fig
Exemple #31
0
 def test_duration(self, p):
     total_frames = 0
     f = source(p)
     duration = f.duration
     while True:
         _, read = f()
         total_frames += read
         if read < f.hop_size: break
     self.assertEqual(duration, total_frames)
Exemple #32
0
def calculate_song_bpm(path: str, params: typing.Dict = None):
    path = f'{DATA_FOLDER}/{path}'

    if params is None:
        params = {}
    # default:
    samplerate, win_s, hop_s = 44100, 1024, 512
    if 'mode' in params:
        if params.mode in ['super-fast']:
            # super fast
            samplerate, win_s, hop_s = 4000, 128, 64
        elif params.mode in ['fast']:
            # fast
            samplerate, win_s, hop_s = 8000, 512, 128
        elif params.mode in ['default']:
            pass
        else:
            print("unknown mode {:s}".format(params.mode))
    # manual settings
    if 'samplerate' in params:
        samplerate = params.samplerate
    if 'win_s' in params:
        win_s = params.win_s
    if 'hop_s' in params:
        hop_s = params.hop_s

    s = source(path, samplerate, hop_s)
    samplerate = s.samplerate
    o = tempo("specdiff", win_s, hop_s, samplerate)
    # List of beats, in samples
    beats = []
    # Total number of frames read
    total_frames = 0

    while True:
        samples, read = s()
        is_beat = o(samples)
        if is_beat:
            this_beat = o.get_last_s()
            beats.append(this_beat)
        #if o.get_confidence() > .2 and len(beats) > 2.: #  break
        total_frames += read
        if read < hop_s: break

    def beats_to_bpm(beats, path):
        if len(beats) > 1:
            if len(beats) < 4:
                print("few beats found in {:s}".format(path))
            bpms = 60. / diff(beats)  #bpm is an array
            medinbpm = median(bpms)  #medinbpm is a float number
            return medinbpm  #needs to be understood
        else:
            print("not enough beats found in {:s}".format(path))
            return 0

    # print "beats-in-bpm: ", beats
    return beats_to_bpm(beats, path)
Exemple #33
0
def read_file_aubio(filename):
    import aubio
    f = aubio.source(filename, hop_size = 1024)
    total_frames = 0
    while True:
        _, read = f()
        total_frames += read
        if read < f.hop_size: break
    return total_frames, f.samplerate
Exemple #34
0
def get_spectrogram(filename, samplerate = 0):
    win_s = 512                                        # fft window size
    hop_s = win_s // 2                                 # hop size
    fft_s = win_s // 2 + 1                             # spectrum bins

    a = source(filename, samplerate, hop_s)            # source file
    if samplerate == 0: samplerate = a.samplerate
    pv = pvoc(win_s, hop_s)                            # phase vocoder
    specgram = zeros([0, fft_s], dtype=float_type)     # numpy array to store spectrogram

    # analysis
    while True:
        samples, read = a()                              # read file
        specgram = vstack((specgram,pv(samples).norm))   # store new norm vector
        if read < a.hop_size: break

    # plotting
    fig = plt.imshow(log10(specgram.T + .001), origin = 'bottom', aspect = 'auto', cmap=plt.cm.gray_r)
    ax = fig.axes
    ax.axis([0, len(specgram), 0, len(specgram[0])])
    # show axes in Hz and seconds
    time_step = hop_s / float(samplerate)
    total_time = len(specgram) * time_step
    outstr = "total time: %0.2fs" % total_time
    print(outstr + ", samplerate: %.2fkHz" % (samplerate / 1000.))
    n_xticks = 10
    n_yticks = 10

    def get_rounded_ticks( top_pos, step, n_ticks ):
        top_label = top_pos * step
        # get the first label
        ticks_first_label = top_pos * step / n_ticks
        # round to the closest .1
        ticks_first_label = round ( ticks_first_label * 10. ) / 10.
        # compute all labels from the first rounded one
        ticks_labels = [ ticks_first_label * n for n in range(n_ticks) ] + [ top_label ]
        # get the corresponding positions
        ticks_positions = [ ticks_labels[n] / step for n in range(n_ticks) ] + [ top_pos ]
        # convert to string
        ticks_labels = [  "%.1f" % x for x in ticks_labels ]
        # return position, label tuple to use with x/yticks
        return ticks_positions, ticks_labels
  
    # apply to the axis
    x_ticks, x_labels = get_rounded_ticks ( len(specgram), time_step, n_xticks )
    y_ticks, y_labels = get_rounded_ticks ( len(specgram[0]), (samplerate / 1000. / 2.) / len(specgram[0]), n_yticks )
    ax.set_xticks( x_ticks )
    ax.set_yticks ( y_ticks )
    ax.set_xticklabels( x_labels )
    ax.set_yticklabels ( y_labels )
    ax.set_ylabel('Frequency (kHz)')
    ax.set_xlabel('Time (s)')
    ax.set_title(os.path.basename(filename))
    for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
            ax.get_xticklabels() + ax.get_yticklabels()):
        item.set_fontsize('x-small')
    return fig
    def get_pitch(self):
        if path.exists(self.filename) == False:
            raise Exception(f"File Path to {self.filename} does not exist")

        else:
            downsample = 1
            samplerate = 44100 // downsample
            if len(sys.argv) > 2: samplerate = int(sys.argv[2])

            win_s = 4096 // downsample  # fft size
            hop_s = 512 // downsample  # hop size

            s = source(self.filename, samplerate, hop_s)
            samplerate = s.samplerate

            tolerance = 0.8

            pitch_o = pitch("yin", win_s, hop_s, samplerate)
            pitch_o.set_unit("midi")
            pitch_o.set_tolerance(tolerance)

            pitches = []
            confidences = []

            # Total number of frames read
            total_frames = 0
            while True:
                samples, read = s()
                pitch_midi = pitch_o(samples)[0]
                pitch_midi = int(round(pitch_midi))
                confidence = pitch_o.get_confidence()
                if confidence < 0.9: pitch_midi = 0.
                #print("%f %f %f" % (total_frames / float(samplerate), pitch, confidence))
                if len(pitches) == 0 and pitch_midi != 0:
                    pitches.append(pitch_midi)
                elif len(pitches) > 0:
                    if pitch_midi != pitches[-1] and pitch_midi != 0:
                        pitches.append(pitch_midi)
                else:
                    pass

                #print(pitches)
                confidences += [confidence]
                total_frames += read
                if read < hop_s: break

            if 0: sys.exit(0)
            notes = []
            for midi in pitches:
                note = midi2note(midi)
                notes.append(note.strip("0123456789"))

            print(notes)
            self.pitch_text = str(notes)
            self.q.put(notes)
            raise Exception("Thread Terminated")
Exemple #36
0
def disp(filename, samplerate = 44100, tuning = None):
    from aubio import source, pitch
    from numpy import mean, std

    # READ SETUP

    unit = "cent"
    downsample = 1
    samplerate //= downsample
    
    win_s = 4096 // downsample # fft size
    hop_s = 512  // downsample # hop size

    s = source(filename, samplerate, hop_s)
    samplerate = s.samplerate

    tolerance = 0.8

    pitch_o = pitch("yin", win_s, hop_s, samplerate)
    pitch_o.set_unit(unit)
    pitch_o.set_tolerance(tolerance)

    pitches = []
    confidences = []

    # READING

    while True:
        samples, read = s()
        pitch = pitch_o(samples)[0]
        confidence = pitch_o.get_confidence()
        pitches += [pitch]
        confidences += [confidence]
        if read < hop_s: break

    # OUTPUT

    if type(tuning) is str:
        tuning = nameNote(tuning)
    
    mistakes = {}
    for i, pitch in enumerate(pitches):
        if confidences[i] > 0.1:
            correct = int(pitch + 0.5) #### CENT/MIDI ONLY ####
            if correct > 0:
              if not correct in mistakes:
                  mistakes[correct] = []
              mistakes[correct].append(pitch - correct)

    offset = 0
    if tuning != None:
        offset = mean(mistakes[tuning])
    means = {i:100 * (mean(mistakes[i]) - offset) for i in mistakes}
    stds = {i:100 * std(mistakes[i]) for i in mistakes}
    print({i:len(mistakes[i]) for i in sorted(mistakes)})
    return "\n".join([noteName(i) + ": " + "%.2f" % abs(means[i]) + " cents " + ["flat", "sharp"][means[i] > 0] + ", " + "%.2f" % stds[i] + " cents variation" for i in sorted(mistakes)])
Exemple #37
0
def play(file_name, handle_beat, sample_rate=0):
    win_s = 1024  # fft size
    hop_s = win_s // 2  # hop size
    a_source = aubio.source(file_name, sample_rate, hop_s)  # create aubio source

    sample_rate = a_source.samplerate

    # create aubio tempo detection
    a_tempo = aubio.tempo("default", win_s, hop_s, sample_rate)
    global last_beat_time
    last_beat_time = time.time()


    # pyaudio callback
    def callback(_in_data, _frame_count, _time_info, _status):
        samples, read = a_source()
        is_beat = a_tempo(samples)
        global last_beat_time
        now = time.time()
        if is_beat:
            beat_length = now - last_beat_time
            last_beat_time = now
            print("tick")
            t = threading.Thread(target=handle_beat, args=[beat_length])
            t.start()
        audiobuf = samples.tobytes()
        if read < hop_s:
            beat_length = now - last_beat_time
            handle_beat(beat_length)
            #t = threading.Thread(target=handle_beat, args=[beat_length])
            #t.start()
            return audiobuf, pyaudio.paComplete
        return audiobuf, pyaudio.paContinue

    # create pyaudio stream with frames_per_buffer=hop_s and format=paFloat32
    p = pyaudio.PyAudio()
    pyaudio_format = pyaudio.paFloat32
    frames_per_buffer = hop_s
    n_channels = 1
    stream = p.open(format=pyaudio_format, channels=n_channels, rate=sample_rate,
                    output=True, frames_per_buffer=frames_per_buffer,
                    stream_callback=callback)

    # start pyaudio stream
    stream.start_stream()

    # wait for stream to finish
    while stream.is_active():
        time.sleep(0.1)

    # stop pyaudio stream
    stream.stop_stream()
    stream.close()

    # close pyaudio
    p.terminate()
Exemple #38
0
def audio_to_midi(filename, midioutput, samplerate=44100, downsample=1):
    samplerate = 44100 // downsample

    win_s = 512 // downsample # fft size
    hop_s = 128 // downsample # hop size

    s = source(filename, samplerate, hop_s)
    samplerate = s.samplerate

    tolerance = 0.8

    notes_o = notes("default", win_s, hop_s, samplerate)

    print("%8s" % "time","[ start","vel","last ]")

    # create a midi file
    mid = MidiFile()
    track = MidiTrack()
    mid.tracks.append(track)

    ticks_per_beat = mid.ticks_per_beat # default: 480
    bpm = 120 # default midi tempo

    tempo = bpm2tempo(bpm)
    track.append(MetaMessage('set_tempo', tempo=tempo))
    track.append(MetaMessage('time_signature', numerator=4, denominator=4))

    def frames2tick(frames, samplerate=samplerate):
        sec = frames / float(samplerate)
        return int(second2tick(sec, ticks_per_beat, tempo))

    last_time = 0

    # total number of frames read
    total_frames = 0
    while True:
        samples, read = s()
        new_note = notes_o(samples)
        if (new_note[0] != 0):
            note_str = ' '.join(["%.2f" % i for i in new_note])
            print("%.6f" % (total_frames/float(samplerate)), new_note)
            delta = frames2tick(total_frames) - last_time
            if new_note[2] > 0:
                track.append(Message('note_off', note=int(new_note[2]),
                    velocity=127, time=delta)
                    )
            track.append(Message('note_on',
                note=int(new_note[0]),
                velocity=int(new_note[1]),
                time=delta)
                )
            last_time = frames2tick(total_frames)
        total_frames += read
        if read < hop_s: break

    mid.save(midioutput)
Exemple #39
0
def count_samples_in_file(file_path):
    from aubio import source
    hopsize = 256
    s = source(file_path, 0, hopsize)
    total_frames = 0
    while True:
        _, read = s()
        total_frames += read
        if read < hopsize: break
    return total_frames
Exemple #40
0
def get_pitches(filename):
    pitches = []
    s = source(filename, SIMPLE_RATE, HOP_SIZE)
    p = pitch(PITCH_METHOD, FRAME_SIZE, HOP_SIZE, SIMPLE_RATE)
    while True:
        samples, read = s()
        pit = p(samples)[0]
        pitches += [pit]
        if read < HOP_SIZE: break
    return pitches
Exemple #41
0
 def test_read_after_close(self):
     samplerate = 0  # use native samplerate
     hop_size = 256
     f = source(default_test_sound, samplerate, hop_size)
     read, frames = f()
     f.close()
     with assert_raises(RuntimeError):
         read, frames = f()
     with assert_raises(RuntimeError):
         read, frames = f.do_multi()
Exemple #42
0
 def test_seek_to_half(self, p):
     from random import randint
     f = source(p, 0, 0)
     assert f.samplerate != 0
     assert f.hop_size != 0
     a = self.read_from_source(f)
     c = randint(0, a)
     f.seek(c)
     b = self.read_from_source(f)
     assert a == b + c
Exemple #43
0
def get_spectrogram(filename, samplerate=0):
    win_s = 512  # fft window size
    hop_s = win_s / 2  # hop size
    fft_s = win_s / 2 + 1  # spectrum bins

    a = source(filename, samplerate, hop_s)  # source file
    if samplerate == 0: samplerate = a.samplerate
    pv = pvoc(win_s, hop_s)  # phase vocoder
    specgram = zeros([0, fft_s],
                     dtype='float32')  # numpy array to store spectrogram

    # analysis
    while True:
        samples, read = a()  # read file
        specgram = vstack(
            (specgram, pv(samples).norm))  # store new norm vector
        if read < a.hop_size: break

    # plotting
    imshow(log10(specgram.T + .001),
           origin='bottom',
           aspect='auto',
           cmap=cm.gray_r)
    axis([0, len(specgram), 0, len(specgram[0])])
    # show axes in Hz and seconds
    time_step = hop_s / float(samplerate)
    total_time = len(specgram) * time_step
    print "total time: %0.2fs" % total_time,
    print ", samplerate: %.2fkHz" % (samplerate / 1000.)
    n_xticks = 10
    n_yticks = 10

    def get_rounded_ticks(top_pos, step, n_ticks):
        top_label = top_pos * step
        # get the first label
        ticks_first_label = top_pos * step / n_ticks
        # round to the closest .1
        ticks_first_label = round(ticks_first_label * 10.) / 10.
        # compute all labels from the first rounded one
        ticks_labels = [ticks_first_label * n
                        for n in range(n_ticks)] + [top_label]
        # get the corresponding positions
        ticks_positions = [ticks_labels[n] / step
                           for n in range(n_ticks)] + [top_pos]
        # convert to string
        ticks_labels = ["%.1f" % x for x in ticks_labels]
        # return position, label tuple to use with x/yticks
        return ticks_positions, ticks_labels

    # apply to the axis
    xticks(*get_rounded_ticks(len(specgram), time_step, n_xticks))
    yticks(*get_rounded_ticks(len(specgram[0]), (samplerate / 2. / 1000.) /
                              len(specgram[0]), n_yticks))
    ylabel('Frequency (kHz)')
    xlabel('Time (s)')
Exemple #44
0
def main():
    parser = aubio_parser()
    args = parser.parse_args()
    if 'show_version' in args and args.show_version:
        sys.stdout.write('aubio version ' + aubio.version + '\n')
        sys.exit(0)
    elif 'verbose' in args and args.verbose > 3:
        sys.stderr.write('aubio version ' + aubio.version + '\n')
    if 'command' not in args or args.command is None:
        # no command given, print help and return 1
        parser.print_help()
        sys.exit(1)
    elif not args.source_uri and not args.source_uri2:
        sys.stderr.write("Error: a source is required\n")
        parser.print_help()
        sys.exit(1)
    elif args.source_uri2 is not None:
        args.source_uri = args.source_uri2
    try:
        # open source_uri
        with aubio.source(args.source_uri,
                          hop_size=args.hop_size,
                          samplerate=args.samplerate) as a_source:
            # always update args.samplerate to native samplerate, in case
            # source was opened with args.samplerate=0
            args.samplerate = a_source.samplerate
            # create the processor for this subcommand
            processor = args.process(args)
            frames_read = 0
            while True:
                # read new block from source
                block, read = a_source()
                # execute processor on this block
                res = processor(block)
                # print results for this block
                if args.verbose > 0:
                    processor.repr_res(res, frames_read, a_source.samplerate)
                # increment total number of frames read
                frames_read += read
                # exit loop at end of file
                if read < a_source.hop_size: break
            # flush the processor if needed
            processor.flush(frames_read, a_source.samplerate)
            if args.verbose > 1:
                fmt_string = "read {:.2f}s"
                fmt_string += " ({:d} samples in {:d} blocks of {:d})"
                fmt_string += " from {:s} at {:d}Hz\n"
                sys.stderr.write(
                    fmt_string.format(frames_read / float(a_source.samplerate),
                                      frames_read,
                                      frames_read // a_source.hop_size + 1,
                                      a_source.hop_size, a_source.uri,
                                      a_source.samplerate))
    except KeyboardInterrupt:
        sys.exit(1)
def track(fn):
    sr = 44100
    n_fft = 4096
    hop_size = 512

    tolerance = .8

    pitch_o = aubio.pitch('yinfft', n_fft, hop_size, sr)
    pitch_o.set_unit('midi')
    pitch_o.set_tolerance(tolerance)

    strings = []
    pitches = []
    confidences = []
    time_plt = []
    pitch_plt = []

    s = aubio.source(fn, sr, hop_size)
    total_frames = 0
    while True:
        samples, read = s()
        pitch = int(pitch_o(samples)[0])
        confidence = pitch_o.get_confidence()
        time = total_frames / sr

    #    print("%f %f %f" % (time, pitch, confidence))
        pitches.append(pitch)
        confidences.append(confidence)

        if confidence > .95 and pitch >= 1:
            time_plt.append(time)
            pitch_plt.append(pitch)

        total_frames += read
        if read < hop_size: 
            break

    # Processing
    pitch_plt = np.array(pitch_plt)
    pitch_median = np.median(pitch_plt[:50])
    pitch_plt -= pitch_median
    time_plt = np.array(time_plt)
    time_plt -= time_plt[0]

    strings.append(np.array_str(pitch_plt)[1:pitch_plt.size-1])

    # intervals = np.zeros(pitch_plt.size-1)
    # for j in range(intervals.size):
    #     intervals[j] = pitch_plt[j+1]-pitch_plt[j]

    #plt.plot(time_plt, pitch_plt)
    #plt.show()

    return pitch_plt
Exemple #46
0
def analyzeMFCC(grain):
    windowSize = int(float(grain["frameCount"]))
    s = source(grain["file"], int(grain["sampleRate"]), windowSize)
    sampleRate = s.samplerate
    p = pvoc(windowSize, windowSize)
    m = mfcc(windowSize, 40, 13, s.samplerate)
    samples, read = s()
    spec = p(samples)
    mfcc_out = m(spec)
    mfccs = mfcc_out.tolist()
    return mfccs
Exemple #47
0
def get_file_bpm(path, params = None):
    """ Calculate the beats per minute (bpm) of a given file.
        path: path to the file
        param: dictionary of parameters
    """
    if params is None:
        params = {}
    try:
        win_s = params['win_s']
        samplerate = params['samplerate']
        hop_s = params['hop_s']
    except KeyError:
        """
        # super fast
        samplerate, win_s, hop_s = 4000, 128, 64
        # fast
        samplerate, win_s, hop_s = 8000, 512, 128
        """
        # default:
        samplerate, win_s, hop_s = 44100, 1024, 512

    s = source(path, samplerate, hop_s)
    samplerate = s.samplerate
    o = tempo("specdiff", win_s, hop_s, samplerate)
    # List of beats, in samples
    beats = []
    # Total number of frames read
    total_frames = 0

    while True:
        samples, read = s()
        is_beat = o(samples)
        if is_beat:
            this_beat = o.get_last_s()
            beats.append(this_beat)
            #if o.get_confidence() > .2 and len(beats) > 2.:
            #    break
        total_frames += read
        if read < hop_s:
            break

    # Convert to periods and to bpm
    if len(beats) > 1:
        if len(beats) < 4:
            print("few beats found in {:s}".format(path))
        bpms = 60./diff(beats)
        for element in bpms:
            print element
            bpms2.append(bpms)
        b = median(bpms)
    else:
        b = 0
        print("not enough beats found in {:s}".format(path))
    return b
Exemple #48
0
 def test_read_from_mono(self, filename):
     total_frames = 0
     hop_size = 2048
     with source(filename, 0, hop_size) as input_source:
         assert_equal(input_source.hop_size, hop_size)
         #assert_equal(input_source.samplerate, samplerate)
         total_frames = 0
         for frames in input_source:
             total_frames += frames.shape[-1]
         # check we read as many samples as we expected
         assert_equal(total_frames, input_source.duration)
Exemple #49
0
def load_aubio(fp):
    f = aubio.source(fp, hop_size=1024)
    sig = np.zeros(f.duration, dtype=aubio.float_type)
    total_frames = 0
    while True:
        samples, read = f()
        sig[total_frames:total_frames + read] = samples[:read]
        total_frames += read
        if read < f.hop_size:
            break
    return sig
Exemple #50
0
def data_load_aubio(**kwargs):
    if 'filename' in kwargs:
        filename = kwargs['filename']
    else:
        filename = '/home/src/QK/data/sound-arglaaa-2018-10-25/24.wav'

    samplerate = 0
    src = aubio.source(filename, samplerate, channels=1)
    src.seek(0)

    return src
Exemple #51
0
def analyzePitch(grain):
    s = source(grain["file"], int(grain["sampleRate"]),
               int(float(grain["frameCount"])))
    samplerate = s.samplerate
    tolerance = 0.8
    pitch_out = pitch("yin", int(float(grain["frameCount"])),
                      int(float(grain["frameCount"])), samplerate)
    samples, read = s()
    pitchFreq = pitch_out(samples)[0].item()

    return pitchFreq
Exemple #52
0
def get_length_frames(filename, samplerate = 512, hop_size = 256):
    f = source(filename, samplerate, hop_size)

    total_frames, read = 0, f.hop_size

    while read:
        vec, read = f()
        total_frames += read
        if read < f.hop_size: break

    return total_frames
def play_music(filename, handle_beat, samplerate=0):
    win_s = 1024  # fft size
    hop_s = win_s // 2  # hop size
    #samplerate = 0
    #if len(sys.argv) > 2: samplerate = int(sys.argv[2])

    # create aubio source
    a_source = aubio.source(filename, samplerate, hop_s)
    samplerate = a_source.samplerate

    # create aubio tempo detection
    a_tempo = aubio.tempo("default", win_s, hop_s, samplerate)

    # create a simple click sound
    click = 0.7 * np.sin(
        2. * np.pi * np.arange(hop_s) / hop_s * samplerate / 3000.)

    # pyaudio callback
    def pyaudio_callback(_in_data, _frame_count, _time_info, _status):
        samples, read = a_source()
        is_beat = a_tempo(samples)
        if is_beat:
            #samples += click
            handle_beat()
        audiobuf = samples.tobytes()
        if read < hop_s:
            return (audiobuf, pyaudio.paComplete)
        return (audiobuf, pyaudio.paContinue)

    # create pyaudio stream with frames_per_buffer=hop_s and format=paFloat32
    p = pyaudio.PyAudio()
    pyaudio_format = pyaudio.paFloat32
    frames_per_buffer = hop_s
    n_channels = 1
    stream = p.open(format=pyaudio_format,
                    channels=n_channels,
                    rate=samplerate,
                    output=True,
                    frames_per_buffer=frames_per_buffer,
                    stream_callback=pyaudio_callback)

    # start pyaudio stream
    stream.start_stream()

    # wait for stream to finish
    while stream.is_active():
        time.sleep(0.1)

    # stop pyaudio stream
    stream.stop_stream()
    stream.close()
    stream.get
    # close pyaudio
    p.terminate()
    def _extract_frequency_bands(self):
        """
        Helper function to extract frequency bands from audio

        ARGS:
            None
        RETURNS:
            None
        """
        s = source(filename, samplerate, hop_s)
        samplerate = s.samplerate
        pass
Exemple #55
0
 def test_samplerate_hopsize(self, hop_size, samplerate, soundfile):
     orig_samplerate = parse_file_samplerate(soundfile)
     try:
         if orig_samplerate is not None and orig_samplerate < samplerate:
             # upsampling should emit a warning
             with assert_warns(UserWarning):
                 f = source(soundfile, samplerate, hop_size)
         else:
             f = source(soundfile, samplerate, hop_size)
     except RuntimeError as e:
         err_msg = 'failed opening with hop_s={:d}, samplerate={:d} ({:s})'
         skipTest(err_msg.format(hop_size, samplerate, str(e)))
     assert f.samplerate != 0
     read_frames = self.read_from_source(f)
     if 'f_' in soundfile and samplerate == 0:
         import re
         f = re.compile(r'.*_\([0:9]*f\)_.*')
         match_f = re.findall('([0-9]*)f_', soundfile)
         if len(match_f) == 1:
             expected_frames = int(match_f[0])
             assert_equal(expected_frames, read_frames)
    def __init__(self, song, samplerate=44100, hop_size=256):
        self.src = aubio.source(song)
        self.total_frames = 0
        self.hop_size = hop_size

        while True:
            samples, read = self.src()
            self.total_frames += read
            if read < self.hop_size:
                break

        self.lengthInSecs = self.total_frames / self.src.samplerate
Exemple #57
0
def get_max_time(filename,
                 samplerate=0,
                 block_size=4096,
                 ax=None,
                 downsample=2**4,
                 stop_at=None):
    import matplotlib.pyplot as plt
    if not ax:
        fig = plt.figure()
        ax = fig.add_subplot(111)
    hop_s = block_size

    allsamples = np.zeros(0, )
    downsample = downsample  # to plot n samples / hop_s

    should_stop_early = True

    a = source(filename, samplerate, hop_s)  # source file
    if samplerate == 0: samplerate = a.samplerate
    if stop_at == None: should_stop_early = False

    total_frames = 0
    while True:
        samples, read = a()
        # keep some data to plot it later
        new_samples = abs(samples)
        allsamples = np.hstack([allsamples, new_samples])
        total_frames += read
        if total_frames > stop_at * samplerate and should_stop_early: break
        if read < hop_s: break

    offset_samples = np.hstack([allsamples[1:], [0]])
    derivative_samples = offset_samples - allsamples
    t_max_idx = np.argmax(allsamples, axis=0)
    derivative_max_idx = np.argmax(derivative_samples, axis=0)

    # normalize
    derivative_samples = derivative_samples / derivative_samples[
        derivative_max_idx]

    allsamples_times = [(float(t)) for t in range(len(allsamples))]
    t_max = allsamples_times[t_max_idx]
    derivative_t_max = allsamples_times[derivative_max_idx]
    print("max is reached at %02d:%02d:%03d" %
          (t_max / float(samplerate) / 60, (t_max / float(samplerate)) % 60,
           (t_max * 1000.0 / float(samplerate)) % 1000))

    ax.plot(allsamples_times, allsamples, '-b', derivative_samples, '-g')
    ax.axis(xmin=allsamples_times[0], xmax=allsamples_times[-1])
    set_xlabels_sample2time(ax, allsamples_times[-1], samplerate)

    return ax, t_max / float(samplerate), derivative_t_max / float(samplerate)
Exemple #58
0
    def analyse_notes(self):
        """
        Taken from https://github.com/aubio/aubio/tree/master/python/demos and slightly modified
        This uses the pitch method in aubio. It reads the audio file and gives a list of frequencies and the proability
        that it is that note.
        :returns A list of notes and the frequecies of those notes
        """
        downsample = 1
        samplerate = 44100 // downsample

        win_s = 4096 // downsample  # fft size
        hop_s = 512 // downsample  # hop size

        # TAKES A STR ARG FOR THE FILE PATH, NOT THE FILE ITSELF
        try:
            s = aubio.source(self.filepath, samplerate, hop_s)

            samplerate = s.samplerate

            tolerance = 0.8

            # uses the yin algorithm to determine pitch
            pitch_o = aubio.pitch("yin", win_s, hop_s, samplerate)
            pitch_o.set_unit("Hz")
            pitch_o.set_tolerance(tolerance)

            pitches = []
            confidences = []

            # total number of frames read
            total_frames = 0
            while True:
                samples, read = s()
                pitch = pitch_o(samples)[0]
                pitch = int(round(pitch))
                confidence = pitch_o.get_confidence()
                # set the threshold high to ignore frequencies such as random string noise before audio start playing
                if confidence < 0.99: pitch = 0.

                pitches += [pitch]
                confidences += [confidence]
                total_frames += read
                if read < hop_s: break

            pitch_list_minus_duplicates, freq_list_minus_duplicates = self.remove_consecutive_duplicates(
                pitches)
            return pitch_list_minus_duplicates, freq_list_minus_duplicates

        except Exception as e:
            error_str = "Could not open file:{}. Error: {}".format(
                self.filepath, e)
            print(error_str)
Exemple #59
0
def detect(filename):
        downsample = 8
        samplerate = 44100 // downsample
        win_s = 4096 // downsample # fft size
        hop_s = 512  // downsample # hop size
        s = aubio.source(filename, samplerate, hop_s)
        samplerate = s.samplerate
        tolerance = 0.8
        pitch_o = aubio.pitch("yin", win_s, hop_s, samplerate)
        pitch_o.set_unit("freq")
        pitch_o.set_tolerance(tolerance)
        pitches = []
        confidences = []
        # total number of frames read
        total_frames = 0
        counter = 0
        while True:
            samples, read = s()
            pitch = pitch_o(samples)[0]
            confidence = pitch_o.get_confidence()
            #print "%f %f %f" % (total_frames / float(samplerate), pitch, confidence)
            pitches += [pitch]
            confidences += [confidence]
            total_frames += read
            if read < hop_s: break
        letterList = []
        newPitches = []
        amplitudes = []
        for index in range(0, len(pitches)):
            totalFreq = 0
            if(index+5 <= len(pitches)):
                for freq in range(index, index+5):
                    totalFreq += pitches[freq]
                averageFreq = totalFreq/5
                newPitches.append(averageFreq)
            else:
                counter = 0
                for index in range(index, len(pitches)):
                    totalFreq += pitches[freq]
                    counter += 1
                averageFreq = totalFreq/counter
                newPitches.append(averageFreq)
            # loudness
            amp = getSection(filename,index, index + 5)
            amplitudes.append(amp.rms)
        for pi in newPitches:
            letterName = findPitchLetterName(pi)
            letterList.append(pi) # letterName -> pi for frequency numbers
        newList = modifyList(letterList)
        note = findModeInList(newList)
        #print(letterList, amplitudes)
        return letterList, amplitudes
Exemple #60
0
def load_file_aubio(filename):
    import aubio
    f = aubio.source(filename, hop_size=1024)
    y = np.zeros(f.duration, dtype=aubio.float_type)
    total_frames = 0
    while True:
        samples, read = f()
        y[total_frames:total_frames + read] = samples[:read]
        total_frames += read
        if read < f.hop_size: break
    assert len(y) == total_frames
    #print y.mean(), y.shape
    return total_frames, f.samplerate