Exemple #1
0
def process_file(wav_file, class_labels, to_csv, num_files, output_file,
                 ten_seconds, num_predictions, threshold):
    print(wav_file)
    files = tf.io.gfile.glob(wav_file)
    total_predictions = []
    examples = []
    print('Number of predictions ' + str(num_predictions))
    print('Threshold ' + str(threshold))
    if not files:
        raise IOError("Unable to find input files. data_pattern='" + wav_file +
                      "'")
    if num_files == 0:
        num_files = len(files)
    for i in range(0, num_files):
        if not files[i]:
            i = i + 1
        sr, data = wavfile.read(files[i])
        if data.dtype != np.int16:
            raise TypeError('Bad sample type: %r' % data.dtype)

        print(i)
        print(files[i])

        # local import to reduce start-up time
        from audio.processor import WavProcessor, format_predictions

        with WavProcessor() as proc:
            if ten_seconds == False:
                predictions = proc.get_predictions(wav_file, sr, data,
                                                   num_predictions, threshold,
                                                   class_labels)
                print('Predictions')
                print(format_predictions(predictions))
                if to_csv == True:
                    examples.append(int(len(data) / 44100))
                    total_predictions.append(predictions)

            else:
                predictions = proc.get_predictions2(sr, data, num_predictions,
                                                    threshold, class_labels)
                print('Predictions')
                for i in range(0, len(predictions)):
                    print(str(i) + ' ' + format_predictions(predictions[i]))
                if to_csv == True:
                    examples.append(int(len(data) / 44100))
                    total_predictions.append(predictions)

    if to_csv == True:
        from audio.processor import WavProcessor, format_predictions
        with WavProcessor() as proc:
            if ten_seconds == False:
                proc.toCSV(examples, wav_file, num_files, output_file,
                           total_predictions)
            else:
                proc.toCSV2(examples, wav_file, num_files, output_file,
                            total_predictions)
    def _process_loop(self):
        with WavProcessor() as proc:
            self._ask_data_event.set()
            while self.is_running:
                if self._process_buf is None:
                    # Waiting for data to process
                    time.sleep(self._processor_sleep_time)
                    continue

                self._ask_data_event.clear()
                if self._save_path:
                    f_path = os.path.join(
                        self._save_path, 'record_{:.0f}.wav'.format(time.time())
                    )
                    wavfile.write(f_path, self._sample_rate, self._process_buf)
                    logger.info('"{}" saved'.format(f_path))

                logger.info('Start processing')
                predictions = proc.get_predictions(
                    self._sample_rate, self._process_buf)
                formatted = format_predictions(predictions)
                logger.info('Predictions: {}'.format(formatted))

                self.events_queue.append((datetime.datetime.now(), formatted))
                self._send_dh(predictions)

                logger.info('Stop processing')
                self._process_buf = None
                self._ask_data_event.set()
Exemple #3
0
    def _process_loop(self):
        with WavProcessor() as proc:
            self._ask_data.set()
            while True:
                if self._process_buf is None:
                    # Waiting for data to process
                    time.sleep(self._processor_sleep_time)
                    continue

                self._ask_data.clear()
                if self._save_path:
                    f_path = os.path.join(
                        self._save_path,
                        'record_{:.0f}.wav'.format(time.time()))
                    wavfile.write(f_path, self._sample_rate, self._process_buf)
                    logger.info('"{}" saved.'.format(f_path))

                logger.info('Start processing.')
                predictions = proc.get_predictions(self._sample_rate,
                                                   self._process_buf)
                logger.info('Predictions: {}'.format(
                    format_predictions(predictions)))

                logger.info('Stop processing.')
                self._process_buf = None
                self._ask_data.set()
Exemple #4
0
    def _process_loop(self):
        with WavProcessor() as proc:
            self._ask_data.set()
            try:
                producer = KafkaProducer(
                    bootstrap_servers=config['KAFKA']['bootstrap_servers'])
            except NoBrokersAvailable:
                producer = None
                print("No brokers available, running off-line")

            while True:
                if self._process_buf is None:
                    # Waiting for data to process
                    time.sleep(self._processor_sleep_time)
                    continue

                self._ask_data.clear()
                if self._save_path:
                    f_path = os.path.join(
                        self._save_path,
                        'record_{:.0f}.wav'.format(time.time()))
                    wavfile.write(f_path, self._sample_rate, self._process_buf)

                predictions = proc.get_predictions(self._sample_rate,
                                                   self._process_buf)

                for prediction in predictions:
                    if prediction[1] > 0.4:
                        if producer is not None:
                            producer.send(config['KAFKA']['topic'],
                                          bytes(str(prediction[0]).encode()))
                        print(prediction[0])

                self._process_buf = None
                self._ask_data.set()
Exemple #5
0
    def _process_loop(self):
        with WavProcessor() as proc:
            self._ask_data.set()
            while True:
                i = 0
                pred_values = [
                    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
                ]
                while i < 50:
                    if self._process_buf is None:
                        # Waiting for data to process
                        time.sleep(self._processor_sleep_time)
                        continue

                    self._ask_data.clear()
                    if self._save_path:
                        f_path = os.path.join(
                            self._save_path,
                            'record_{:.0f}.wav'.format(time.time()))
                        wavfile.write(f_path, self._sample_rate,
                                      self._process_buf)
                        logger.info('"{}" saved.'.format(f_path))

                    logger.info(str(i) + ' Start processing.')
                    predictions = proc.get_predictions(self._sample_rate,
                                                       self._process_buf)
                    for p in predictions:
                        pred_values = [
                            x + y
                            for x, y in zip(pred_values, get_labels(p[0]))
                        ]
                        # print(get_labels(x[0]))

    #                logger.info(
    #                    'Predictions: {}'.format(format_predictions(predictions))
    #                )

                    logger.info('Stop processing.')
                    self._process_buf = None
                    self._ask_data.set()
                    i += 1

                #arr_index = np.argmax(np.array(pred_values))
                arr_index = np.argwhere(pred_values == np.amax(pred_values))
                arr_index = arr_index.flatten().tolist()
                #print(pred_values[int(arr_index)])
                #print(arr_index)
                # if(isinstance(arr_index,np.int64)):
                #     print(labels[int(arr_index)])
                # else:
                for x in arr_index:
                    print(labels[int(x)])

                print(pred_values)
def process_file(wav_file):
    sr, data = wavfile.read(wav_file)
    if data.dtype != np.int16:
        raise TypeError('Bad sample type: %r' % data.dtype)

    # local import to reduce start-up time
    from audio.processor import WavProcessor, format_predictions

    with WavProcessor() as proc:
        predictions = proc.get_predictions(sr, data)

    print(format_predictions(predictions))
Exemple #7
0
def gain_features(wav_root='Audio_Dataset',
                  save_path='./EmotiW_youtubeAudio.npz'):

    # save path
    data_path = []
    log_spectrograms_save = []
    embeddings_save = []
    quantized_embeddings_save = []

    proc = WavProcessor()
    for wav_path in tqdm.tqdm(glob.glob(wav_root + '/*')):
        wav_name = os.path.basename(wav_path).split('.')[0]
        sr, data = wavfile.read(
            wav_path
        )  # sr: sample rate; data: original sample data; data.type uint16
        if data.dtype != np.int16:
            raise TypeError('Bad sample type: %r' % data.dtype)
        if len(data) < sr: continue  # less than 1s

        examples_batch, features, quantized_embeddings, predictions = proc.get_predictions(
            sr, data)

        # examples_batch: [3, 96, 60]
        # features: [3, 128]
        # quantized_embeddings: [3, 128]

        frame_num = np.shape(examples_batch)[0]
        data_path.append({'pic_path': wav_name})
        log_spectrograms_save.append(examples_batch.reshape(frame_num, -1))
        embeddings_save.append(features)
        quantized_embeddings_save.append(quantized_embeddings)

    np.savez_compressed(
        save_path,
        data_path=data_path,
        logspec=log_spectrograms_save,
        emb=embeddings_save,
        qemb=quantized_embeddings_save,
    )
def process_dir(start_dir, out_file):

    f = open(out_file, 'w')
    results = []
    with WavProcessor() as proc:
        for dirpath, dirs, files in os.walk(start_dir):
            for filename in [f for f in files if f.lower().endswith('.wav')]:
                fname = os.path.join(dirpath, filename)
                result = process_file(fname, proc)
                results.append((fname, tuple(result)))
                print('%s %s' % (fname, result))
    print(json.dumps(results), file=f)
    f.close()
Exemple #9
0
def process_file(wav_file, ckpt_file, labels_file):
    sr, data = wavfile.read(wav_file)
    print(wav_file, end=' ')

    if data.dtype != np.int16:
        raise TypeError('Bad sample type: %r' % data.dtype)
    
    predictions = []
    with WavProcessor(ckpt_file, labels_file) as proc:
        try:
            predictions = proc.get_predictions(sr, data)
            print(format_predictions(predictions))
        except:
            print('CORRUPTED!')
    return predictions
Exemple #10
0
    def _process_loop(self):
        with WavProcessor() as proc:
            self._ask_data.set()
            while True:
                if self._process_buf is None:
                    # Waiting for data to process
                    time.sleep(self._processor_sleep_time)
                    continue

                self._ask_data.clear()
                if self._save_path:
                    f_path = os.path.join(
                        self._save_path,
                        'record_{:.0f}.wav'.format(time.time()))
                    wavfile.write(f_path, self._sample_rate, self._process_buf)
                    logger.info('"{}" saved.'.format(f_path))

                logger.info('Start processing.')
                predictions = proc.get_predictions(self._sample_rate,
                                                   self._process_buf)
                logger.info('Predictions: {}'.format(
                    format_predictions(predictions)))
                my_dict = {x[0]: x[1] for x in predictions}
                msg_json = {
                    "app_id": "openears",
                    "dev_id": "TEST001",
                    "payload_fields": my_dict,
                    "time": int(time.time() * 1e3)
                }
                msg_str = json.dumps(msg_json)
                auth = {"username": mqtt_user, "password": mqtt_password}
                publish.single("pipeline/openears/TEST001",
                               payload=msg_str,
                               hostname=mqtt_host,
                               port=mqtt_port,
                               auth=auth)
                print('message sent')
                logger.info('Stop processing.')
                self._process_buf = None
                self._ask_data.set()
Exemple #11
0
    def _process_loop(self):
        with WavProcessor() as proc:
            self._ask_data.set()
            while True:
                if self._process_buf is None:
                    # Waiting for data to process
                    time.sleep(self._processor_sleep_time)
                    continue

                self._ask_data.clear()
                if self._save_path:
                    f_path = os.path.join(
                        self._save_path,
                        'record_{:.0f}.wav'.format(time.time()))
                    wavfile.write(f_path, self._sample_rate, self._process_buf)
                    logger.info('"{}" saved.'.format(f_path))

                logger.info('Start processing.')
                predictions = proc.get_predictions(self._sample_rate,
                                                   self._process_buf)
                for i in predictions:
                    if i[0] == "Vehicle" and (float(i[1]) > .2):
                        print("OBS Release")
                        GPIO.output(pin, GPIO.HIGH)
                    else:
                        GPIO.output(pin, GPIO.LOW)
                        print(i[0])
                        print(i[1])
                #print("Type: ")
                #print(type(predictions))
                #logger.info(
                #'Predictions: {}'.format(format_predictions(predictions))
                #)

                logger.info('Stop processing.')
                self._process_buf = None
                self._ask_data.set()
from pydub import AudioSegment
from audio.processor import WavProcessor, format_predictions

df = pd.read_csv('labels.csv')
df = df.set_index('index')

# print(df)

sig = AudioSegment.from_file('kitchen.wav', format="wav")

_start = 0
_end = 6

for x in range(0, 100):
    start = int(_start * 1000)
    end = int(_end * 1000)
    segment = sig[start:end]
    samples = np.array(segment.get_array_of_samples())
    new_sig = samples.astype(np.float32)

    with WavProcessor() as proc:
        predictions = proc.get_predictions(16000, new_sig)

        for p in predictions:
            print(str(_start / 60), ":", str(_end / 60), " - ",
                  df.loc[p[0]].values[1], p[1])

    _start += 6
    _end += 6
import math
import operator
import json

from collections import Counter

import numpy as np
import pandas as pd

from scipy.io import wavfile
from pydub import AudioSegment
from audio.processor import WavProcessor, format_predictions

from log_config import LOGGING

proc = WavProcessor()


def get_labels(csv_file='labels.csv'):
    df = pd.read_csv(csv_file)
    df = df.set_index('index')
    return df


def get_label_val(idx):
    return [0.0 if val != 1 else 1.0 for val in df.loc[idx].values]


def label_sig(sig, df=get_labels()):
    global proc