Exemple #1
0
def test_compose(input, idx, axis):
    t = transforms.Compose(
        [transforms.Crop(idx, axis=axis),
         transforms.Normalize(axis=axis)])
    expected_output = F.crop(input, idx, axis=axis)
    expected_output = F.normalize(expected_output, axis=axis)
    assert np.array_equal(t(input), expected_output)
Exemple #2
0
def test_stft(input, window_size, hop_size, axis):
    expected_output = input
    samples = input.shape[axis]
    spectrogram = F.stft(input, window_size, hop_size, axis=axis)
    magnitude, phase = librosa.magphase(spectrogram)
    output = F.istft(spectrogram, window_size, hop_size, axis=axis)
    output = F.crop(output, (0, samples), axis=axis)
    np.testing.assert_almost_equal(output, expected_output, decimal=6)
def test_expand(input, size, axis, method):
    t = transforms.Expand(size=size, axis=axis, method=method)
    if method == 'pad':
        assert np.array_equal(t(input), F.pad(
            input, (0, size - input.shape[axis]), axis=axis))
    else:
        assert np.array_equal(t(input), F.crop(F.replicate(
            input,
            repetitions=size // input.shape[axis] + 1,
            axis=axis), (0, size), axis=axis))
Exemple #4
0
def test_crop(input, idx, axis, expected_output):
    output = F.crop(input, idx, axis=axis)
    assert np.array_equal(output, expected_output)
Exemple #5
0
def test_randomcrop(input, size, axis):
    t = transforms.RandomCrop(size, axis=axis)
    t.fix_randomization = True
    assert np.array_equal(t(input), t(input))
    assert np.array_equal(t(input), F.crop(input, t.idx, axis=t.axis))