def gen(data, au=False): while True: repeat = 4 index = random.choice(list(range(len(data))), batch_size // repeat) index = list(map(int, index)) list_images_base = [read_input(data[i][0]) for i in index] list_gt_base = [read_gt(data[i][1]) for i in index] list_images = [] list_gt = [] for image, gt in zip(list_images_base, list_gt_base): for _ in range(repeat): image_, gt_ = random_crop(image.copy(), gt.copy()) list_images.append(image_) list_gt.append(gt_) list_images_aug = [] list_gt_aug = [] for image, gt in zip(list_images, list_gt): if au: image, gt = random_augmentation(image, gt) list_images_aug.append(image) list_gt_aug.append(gt) yield tf.squeeze(np.array(list_images_aug)), tf.squeeze( np.array(list_gt_aug), axis=4)
def gen(data): while True: # choose random index in features # try: index = random.choice(list(range(len(data))), batch_size) index = list(map(int, index)) list_images_base = [read_input(data[i][0]) for i in index] list_gt_base = [read_gt(data[i][1]) for i in index] list_images_aug = [] list_gt_aug = [] for image_, gt in zip(list_images_base, list_gt_base): image_aug, gt = random_augmentation(image_, gt) #image_, gt list_images_aug.append(image_aug) list_gt_aug.append(gt) yield np.array(list_images_aug), np.array(list_gt_aug)