Exemple #1
0
def execute_pipeline(text: str, project_type: str, model_name: str,
                     model_attrs: dict, template: str, label_mapping: dict):
    task = TaskFactory.create(project_type)
    model = RequestModelFactory.create(model_name=model_name,
                                       attributes=model_attrs)
    template = MappingTemplate(label_collection=task.label_collection,
                               template=template)
    post_processor = PostProcessor(label_mapping)
    labels = pipeline(text=text,
                      request_model=model,
                      mapping_template=template,
                      post_processing=post_processor)
    return labels.dict()
Exemple #2
0
def execute_pipeline(data: str, config: AutoLabelingConfig):
    label_collection = get_label_collection(config.task_type)
    model = RequestModelFactory.create(model_name=config.model_name,
                                       attributes=config.model_attrs)
    template = MappingTemplate(label_collection=label_collection,
                               template=config.template)
    post_processor = PostProcessor(config.label_mapping)
    labels = pipeline(text=data,
                      request_model=model,
                      mapping_template=template,
                      post_processing=post_processor)
    labels = create_labels(config.task_type, labels)
    return labels
Exemple #3
0
def test_gcp_label_detection_pipeline(data_path, cassettes_path):
    with vcr.use_cassette(
            str(cassettes_path / 'pipeline_gcp_label_detection.yaml'),
            mode='once',
            filter_query_parameters=['key']
    ):
        model = GCPImageLabelDetectionRequestModel(key=os.environ.get('API_KEY_GCP', ''))
        template = GCPImageLabelDetectionTemplate()
        filepath = data_path / 'images/1500x500.jpeg'
        post_processor = PostProcessor({})
        labels = pipeline(
            text=filepath,
            request_model=model,
            mapping_template=template,
            post_processing=post_processor
        )
        labels = labels.dict()
        assert isinstance(labels, list)
        assert len(labels) == 1
        assert 'label' in labels[0]
def test_amazon_pipeline(cassettes_path):
    with vcr.use_cassette(str(cassettes_path /
                              'amazon_comprehend_sentiment.yaml'),
                          mode='once',
                          filter_headers=['authorization']):
        model = AmazonComprehendSentimentRequestModel(
            aws_access_key=os.environ.get('AWS_ACCESS_KEY', ''),
            aws_secret_access_key=os.environ.get('AWS_SECRET_ACCESS_KEY', ''),
            region_name='us-east-1',
            language_code='en')
        template = AmazonComprehendSentimentTemplate()
        post_processor = PostProcessor({})
        labels = pipeline(text='I am very sad.',
                          request_model=model,
                          mapping_template=template,
                          post_processing=post_processor)
        labels = labels.dict()
        assert isinstance(labels, list)
        assert len(labels) == 1
        assert 'label' in labels[0]