Exemple #1
0
    def get_search_space():
        config = ConfigSpace()

        max_depth = GridHyperparameter(name='max_depth', values=[3, 5])

        config.add_hyper([max_depth])

        return config.get_hypers()
Exemple #2
0
    def get_search_space():
        config = ConfigSpace()

        n_neighbors = GridHyperparameter(name='n_neighbors',
                                         values=[3, 5, 7, 10])

        config.add_hyper([n_neighbors])

        return config.get_hypers()
Exemple #3
0
    def get_search_space():
        config = ConfigSpace()

        n_estimator_list = GridHyperparameter(name='n_estimators',
                                              values=[100, 300, 500])

        config.add_hyper(n_estimator_list)

        return config.get_hypers()
Exemple #4
0
    def get_search_space():
        config = ConfigSpace()

        c_list = UniformHyperparameter(name="C", low=0.1, high=10, size=3)
        # dual = CategoryHyperparameter(name="dual", categories=[True, False])
        # grid = GridHyperparameter(name="C", values=[10, 100])

        config.add_hyper([c_list])

        return config.get_hypers()
Exemple #5
0
    def get_search_space():
        config = ConfigSpace()

        fit_intercept = CategoryHyperparameter(name="fit_intercept",
                                               categories=[True, False])
        # grid = GridHyperparameter(name="C", values=[1, 2, 3])

        config.add_hyper([fit_intercept])

        # config.get_hypers()
        return config.get_hypers()
Exemple #6
0
    def get_search_space():
        config = ConfigSpace()

        n_estimators = GridHyperparameter(name='n_estimators',
                                          values=[100, 300, 500])
        learning_rate = UniformHyperparameter(name='learning_rate',
                                              low=0.01,
                                              high=1.0,
                                              size=2)

        config.add_hyper([n_estimators, learning_rate])

        return config.get_hypers()
Exemple #7
0
    def get_search_space():
        config = ConfigSpace()

        # Let's try base estimator with DT, as in real world that also make improvement.
        base_estimators = GridHyperparameter(name='base_estimator',
                                             values=[None, DTRegressor()])
        n_estimators = GridHyperparameter(name='n_estimators',
                                          values=[50, 70, 100])
        learning_rate = UniformHyperparameter(name='learning_rate',
                                              low=0.01,
                                              high=1.0,
                                              size=2)

        config.add_hyper([n_estimators, learning_rate])

        return config.get_hypers()