Exemple #1
0
def plotNNresults():
    rng = [4, 43, 45, 47, 91, 37, 30, 84, 79, 80, 12]
    hiddenlis = [64, 128, 256, 512]
    for hid in hiddenlis:
        for m in range(3):
            trained_network = torch.load(
                f"neural_networks/epch40_h{hid}_mode{m}.savednn")
            ac.compareEncoder(trained_network,
                              mnist_test,
                              rng,
                              save=True,
                              basename=f"result_h{hid}_m{m}")
Exemple #2
0
def evaluateSavedNetwork(filename):
    train_loader = torch.utils.data.DataLoader(mnist_data,
                                               batch_size=glval.batch_size,
                                               shuffle=True)
    test_loader = torch.utils.data.DataLoader(mnist_test,
                                              batch_size=glval.batch_size)
    saved_encoder = torch.load(filename)
    test_results = ac.testEncoder(saved_encoder, test_loader, train_loader,
                                  nn.MSELoss(), ac.Flatten())
    hf.myprint(
        f"Saved Network Train Loss: {test_results[0]} \n\tSaved Network Test Loss: {test_results[1]}"
    )
    ac.compareEncoder(saved_encoder, mnist_test, (0, 20), save=True)
Exemple #3
0
def runConvolutionalAutoencoder(number_of_epochs,
                                plot_graph=False,
                                save_network=False,
                                save_training_log=False,
                                compare=True,
                                log=True,
                                show=True):
    hf.lineprint("Processing autoencoder...")
    trained_dict = ac.train_cnn_for_assigment(number_of_epochs,
                                              mnist_data=mnist_data,
                                              mnist_test=mnist_test)
    basename = f"cnn_epch{number_of_epochs}"
    trained_encoder = trained_dict["autoencoder"]
    if compare:
        ac.compareEncoder(trained_encoder,
                          mnist_test, (0, 50),
                          save=True,
                          basename=basename)
    if save_network:
        torch.save(trained_encoder, basename + ".savednn")
    if save_training_log:
        with open(basename + "_traintest.txt", 'w') as f:
            writedict = trained_dict
            del writedict["autoencoder"]
            f.write(json.dumps(writedict))
    if plot_graph:
        _, ax = plt.subplots(figsize=(10, 5))
        ax.set_xlim(-0.2, number_of_epochs + 0.5)
        ax.set_ylabel('Error')
        ax.set_yscale("log")
        ax.set_xlabel('Epoch')
        x_values = [x for x in range(number_of_epochs + 1)]
        ax.plot(np.array(x_values),
                np.array(trained_dict["test_error_arr"]),
                label="Test Error")
        ax.plot(np.array(x_values),
                np.array(trained_dict["train_error_arr"]),
                label="Training Error")
        ax.legend(loc="upper right")
        filename = f'asignmentGraph_a_h{number_hidden}_epch{number_of_epochs}_m{mode}.png'
        plt.savefig(filename, dpi=200)
        hf.myprint("\tSaved " + filename)
        plt.clf()

        _, ax = plt.subplots(figsize=(10, 5))
        ax.set_xlim(5, number_of_epochs)
        ax.set_ylabel('Error')
        ax.set_yscale("log")
        ax.set_xlabel('Epoch')
        x_values = [x for x in range(5, number_of_epochs + 1)]
        ax.plot(np.array(x_values),
                np.array(trained_dict["test_error_arr"][5:]),
                label="Test Error")
        ax.plot(np.array(x_values),
                np.array(trained_dict["train_error_arr"][5:]),
                label="Training Error")
        ax.legend(loc="upper right")
        filename = f'asignmentGraph_a_h{number_hidden}_epch{number_of_epochs}_m{mode}_zoomed.png'
        plt.savefig(filename, dpi=200)
        hf.myprint("\tSaved " + filename)
        plt.clf()