Exemple #1
0
def renyii(pk0, pk1, a):
    """
    Compute the renyii divergence between two Gaussian distributions.
    """

    # Check dimensions
    assert (pk0.S.shape == pk1.S.shape)
    # Check diagonal
    p0S_is_diag = np.all(np.diag(np.diag(pk0.S)) == pk0.S)
    p1S_is_diag = np.all(np.diag(np.diag(pk1.S)) == pk1.S)

    Sa = (1 - a) * pk0.S + a * pk1.S
    # make sure eigenvalues are positive
    if np.any(np.isfinite(Sa) == 0):
        print(Sa)
    w, v = np.linalg.eig(Sa)
    #assert(np.all(w > 0))
    assert np.linalg.det(Sa) != 0
    #if np.linalg.det(Sa) == 0:
    #  print Sa
    #  return float('Inf')

    dm = pk1.m - pk0.m
    # Use precise computation for diagonal covariance matrices
    if p0S_is_diag and p1S_is_diag:
        r = a / 2. * np.dot(np.dot(dm, np.linalg.inv(Sa)), dm) + \
            (np.sum(np.log(np.diag(Sa))) - (1-a)*np.sum(np.log(np.diag(pk0.S))) - a*np.sum(np.log(np.diag(pk1.S)))) \
                / (1 - a) / 2.
    else:
        r = a / 2. * np.dot(np.dot(dm, np.linalg.inv(Sa)), dm) + \
            (np.log(np.linalg.det(Sa)) - (1-a)*np.log(np.linalg.det(pk0.S)) - a*np.log(np.linalg.det(pk1.S))) \
                / (1 - a) / 2.
    #assert(r > -1e-10)
    return max(r, 0)
    def __init__(self, plb, pub, qlb, qub):
        """
        plb: a numpy array of lower bounds of p
        pub: a numpy array of upper bounds of p
        qlb: a numpy array of lower bounds of q
        qub: a numpy array of upper bounds of q
        """
        convertif = lambda a: np.array(a) if isinstance(a, list) else a
        plb, pub, qlb, qub = list(map(convertif, [plb, pub, qlb, qub]))
        if not np.all([
                plb.shape[0] == pub.shape[0], pub.shape[0] == qlb.shape[0],
                qlb.shape[0] == qub.shape[0]
        ]):
            raise ValueError(
                'all lower and upper bounds must have the same length')

        if not np.all(pub - plb > 0):
            raise ValueError(
                'Require upper - lower to be positive. False for p')

        if not np.all(qub - qlb > 0):
            raise ValueError(
                'Require upper - lower to be positive. False for q')

        self.plb = plb
        self.pub = pub
        self.qlb = qlb
        self.qub = qub
def get_stick_breaking_entropy(stick_propn_mean, stick_propn_info,
                                gh_loc, gh_weights):
    # return the entropy of logitnormal distriibution on the sticks whose
    # logit has mean stick_propn_mean and information stick_propn_info
    # Integration is done on the real line with respect to the Lesbegue measure

    # integration is done numerical with Gauss Hermite quadrature.
    # gh_loc and gh_weights specifiy the location and weights of the
    # quadrature points

    # we seek E[log q(V)], where q is the density of a logit-normal, and
    # V ~ logit-normal. Let W := logit(V), so W ~ Normal. Hence,
    # E[log q(W)]; we can then decompose log q(x) into the terms of a normal
    # distribution and the jacobian term. The expectation of the normal term
    # evaluates to the normal entropy, and we add the jacobian term to it.
    # The jacobian term is 1/(x(1-x)), so we simply add -EV - E(1-V) to the normal
    # entropy.

    assert np.all(gh_weights > 0)

    assert stick_propn_mean.shape == stick_propn_info.shape
    assert np.all(stick_propn_info) > 0

    e_log_v, e_log_1mv =\
        ef.get_e_log_logitnormal(
            lognorm_means = stick_propn_mean,
            lognorm_infos = stick_propn_info,
            gh_loc = gh_loc,
            gh_weights = gh_weights)

    return np.sum(ef.univariate_normal_entropy(stick_propn_info)) + \
                    np.sum(e_log_v + e_log_1mv)
Exemple #4
0
    def m_step(self, expectations, datas, inputs, masks, tags, **kwargs):
        from sklearn.linear_model import LinearRegression
        D, M = self.D, self.M

        for k in range(self.K):
            xs, ys, weights = [], [], []
            for (Ez, _), data, input in zip(expectations, datas, inputs):
                xs.append(
                    np.hstack([
                        data[self.lags - l - 1:-l - 1]
                        for l in range(self.lags)
                    ] + [input[self.lags:]]))
                ys.append(data[self.lags:])
                weights.append(Ez[self.lags:, k])
            xs = np.concatenate(xs)
            ys = np.concatenate(ys)
            weights = np.concatenate(weights)

            # Fit a weighted linear regression
            lr = LinearRegression()
            lr.fit(xs, ys, sample_weight=weights)
            self.As[k], self.Vs[k], self.bs[
                k] = lr.coef_[:, :D *
                              self.lags], lr.coef_[:, D *
                                                   self.lags:], lr.intercept_

            assert np.all(np.isfinite(self.As))
            assert np.all(np.isfinite(self.Vs))
            assert np.all(np.isfinite(self.bs))

            # Update the variances
            yhats = lr.predict(xs)
            sqerr = (ys - yhats)**2
            self.inv_sigmas[k] = np.log(
                np.average(sqerr, weights=weights, axis=0))
def planar_flow(z: np.ndarray,
                w: np.ndarray,
                u: np.ndarray,
                b: Union[int, float],
                h=np.tanh) -> np.ndarray:
    """Apply a planar flow to each element of `samples`

    :param z: numpy array, samples to be transformed
        Shape: (n_samples, n_dim)
    :param u: numpy array, parameter of flow (N, D)
    :param w: numpy array, parameter of flow (N, D)
    :param b: numeric, parameter of flow (N,)
    :param h: callable, non-linear function (default tanh)
    :returns: numpy array, transformed samples

    Transforms given samples according to the planar flow
    :math:`f(z) = z + uh(w^Tz + b)`
    """
    assert np.all(
        np.array([w.shape[0], u.shape[0], b.shape[0]]) ==
        z.shape[0]), 'Incorrect first dimension'
    assert np.all(np.array([w.shape[1], u.shape[1]]) ==
                  z.shape[1]), "Incorrect second dimension"

    u = _get_uhat(u, w)
    assert np.all(
        np.sum(u * w, axis=1)
    ) >= -1, f'Flow is not guaranteed to be invertible (u^Tw < -1: {w._value, u._value})'
    assert np.all(
        np.sum(u * w, axis=1)
    ) >= -1, f'Flow is not guaranteed to be invertible (u^Tw < -1: {w._value, u._value})'
    res = z + np.sum(u * np.tanh(np.sum(z * w, axis=1) + b).reshape(-1, 1),
                     axis=1).reshape(z.shape[0], -1)
    assert res.shape == z.shape, f'Incorrect output shape: {(res.shape)}'
    return res
Exemple #6
0
def myentropy(nn_model, weightlist, xdata, returnallp=False):
    '''
    Usage: for NN_Dropout, use the same weights, duplicated N times
    for MFVI, pass the sampled weights
    '''

    #assert xdata.shape[0]==2
    n_samples = xdata.shape[1]
    p1narray = np.zeros((len(weightlist), n_samples)) #NWeightSamples x NPoints
   
    if type(nn_model) != list: 
        for i, w in enumerate(weightlist):
            w = np.reshape(w, (1, nn_model.D))
            p1narray[i, :] = nn_model.forward(w, xdata) #assumes that the 'model.forward' is dropout-like and has generates different outputs for each i
    elif type(nn_model) == list: # deterministic 
        for i, nn in enumerate(nn_model): 
            p1narray[i, :] = nn.forward(weightlist[i], xdata)
    #print (p_here.shape)
# <<<<<<< HEAD
    certainpts = np.logical_or(np.all(p1narray==0, axis=0), np.all(p1narray==1, axis=0)) 

    p2narray = 1 - p1narray
    p1narraym = np.mean(p1narray, axis=0)
    p2narraym = np.mean(p2narray, axis=0)
    Hpredcheck = -p1narraym*np.log(p1narraym) - p2narraym*np.log(p2narraym)
    Hpredcheck[certainpts] = 0.0
    if returnallp:
        return p1narray, p1narraym, Hpredcheck
    else:
        return p1narraym, Hpredcheck
Exemple #7
0
def BFGS(f, grad_f, hess_0, x):
    dims = len(x)

    H = hess_0
    assert np.all(np.linalg.eig(H)[0] > 0) and np.all(H == H.T), "Initial hessian must be SPD"

    positions = [x]
    while np.linalg.norm(grad_f(x)) > 1e-7:
        p = -np.matmul(np.linalg.inv(hess_0), grad_f(x))
        # p /= np.linalg.norm(p)

        a = get_line_length(f, grad_f, x, p, a_max=10)

        x_next = x + a*p
        s = x_next - x
        y = grad_f(x_next) - grad_f(x)
        rho = 1 / np.matmul(y, s)

        # Note the second term is a scalar (rho) multiplied by a matrix
        t1 = (np.identity(dims) - rho * np.matmul(s[:,np.newaxis], y[np.newaxis,:]))
        t2 = (np.identity(dims) - rho * np.matmul(y[:,np.newaxis], s[np.newaxis,:]))
        t3 = rho * np.matmul(s[:,np.newaxis], s[np.newaxis,:])
        H = many_matmul(t1, H, t2) + t3

        x = x_next
        positions.append(x)
    return np.array(positions)
Exemple #8
0
def test_entropy_bound_vectorized_vs_not():
    D = 2
    N = 1
    rs = npr.RandomState(0)
    stepsize = 0.1
    approx = False

    xs = rs.randn(N,D)

    gradfun = grad(logprob_two_moons)
    gradfun_vec = elementwise_grad(logprob_two_moons)

    new_xs = []
    new_es = []
    for i in xrange(N):
        cur_x = np.reshape(xs[i], (1, D))
        cur_new_x, cur_new_e = gradient_step_track_entropy_non_vectorized(gradfun, x=cur_x.copy(), stepsize=stepsize, rs=None, approx=approx)
        new_xs.append(cur_new_x)
        new_es.append(cur_new_e)

    vec_new_xs, vec_new_es = gradient_step_track_entropy(gradfun_vec, xs=xs.copy(), stepsize=stepsize, rs=None, approx=approx)

    for i in xrange(N):
        assert np.all(vec_new_xs[i] == new_xs[i]), "vectorized: {} non-vectorized: {}".format(vec_new_xs[i], new_xs[i])
    assert np.all(vec_new_es[i] == new_es[i]),     "vectorized: {} non-vectorized: {}".format(vec_new_es, new_es)
Exemple #9
0
def test_sigmoid():
    x = np.linspace(-2, 2, 100)
    y = sigmoid(x)
    yidx = np.argsort(y)
    xidx = np.argsort(x)
    assert (np.all(np.logical_and(np.greater_equal(y, 0), np.less_equal(y,
                                                                        1))))
    assert (np.all(np.equal(yidx, xidx)))
Exemple #10
0
def test_batch_softmax():
    X = np.random.randint(1, 10, size=(10, 5))
    p0 = np.stack(softmax(x_) for i, x_ in enumerate(X))
    p1 = batch_softmax(X, axis=1)
    p0_0 = np.stack(softmax(x_) for i, x_ in enumerate(X.T))
    p1_0 = batch_softmax(X, axis=0)
    assert np.all(np.equal(p0, p1))
    assert np.all(np.equal(p0_0.round(4), p1_0.round(4).T))
Exemple #11
0
def test_batch_transform():
    X = np.random.normal(0, 5, size=(10, 2))
    Y = batch_transform(X, [sigmoid, stable_exp])
    assert (np.all(np.equal(X.shape, Y.shape)))
    assert (np.all(
        np.logical_and(np.greater_equal(Y[:, 0], 0), np.less_equal(Y[:, 0],
                                                                   1))))
    assert (np.all(np.greater_equal(Y[:, 0], 0)))
Exemple #12
0
def grad_gtilde(z):
    """get the value of grad of gtilde at -z by intersection"""
    assert np.all(z <= 0.0)
    lognegz = np.log(-z)
    assert np.all(lognegz <= _gtilde_neglogz_range[1]), (min(lognegz), max(lognegz), _gtilde_neglogz_range)
    rval = _grad_gtilde_interp(lognegz)
    rval[z==0] = _grad_gtilde_value_0
    assert not np.any(np.isnan(rval).flatten()), (np.min(z), np.max(z), np.min(lognegz), np.max(lognegz))
    return rval
Exemple #13
0
def _get_permutations(from_ABs, to_ABs):
    def recode(ABs):
        return np.array([{"A": -1, "B": 1}[c] for c in ABs.upper()], dtype=int)
    from_ABs = recode(from_ABs)
    to_ABs = recode(to_ABs)
    for permutation in it.permutations(range(len(from_ABs))):
        curr = from_ABs[np.array(permutation)]
        if np.all(curr == to_ABs) or np.all(curr == -1 * to_ABs):
            yield permutation
Exemple #14
0
def one_hot(z, K):
    z = np.atleast_1d(z).astype(int)
    assert np.all(z >= 0) and np.all(z < K)
    shp = z.shape
    N = z.size
    zoh = np.zeros((N, K))
    zoh[np.arange(N), np.arange(K)[np.ravel(z)]] = 1
    zoh = np.reshape(zoh, shp + (K,))
    return zoh
Exemple #15
0
def gtilde(z):
    """get the value of gtilde at -z by intersection"""
    assert isinstance(z, np.ndarray)
    assert np.all(z <= 0.0)
    lognegz = np.log(-z)
    assert np.all(lognegz <= _gtilde_neglogz_range[1]), (min(lognegz), max(lognegz), _gtilde_neglogz_range)
    rval = _gtilde_interp(lognegz)
    rval[z==0] = _gtilde_value_0
    rval[lognegz < _gtilde_neglogz[0]] = 0.0
    assert np.all(~np.isnan(rval).flatten())
    return rval
Exemple #16
0
    def test_optimize_locs_width(self):
        """
        Test the function optimize_locs_width(..). Make sure it does not return 
        unusual results.
        """
        # sample source
        n = 600
        dim = 2
        seed = 17

        ss = data.SSGaussMeanDiff(dim, my=1.0)
        #ss = data.SSGaussVarDiff(dim)
        #ss = data.SSSameGauss(dim)
        # ss = data.SSBlobs()
        dim = ss.dim()

        dat = ss.sample(n, seed=seed)
        tr, te = dat.split_tr_te(tr_proportion=0.5, seed=10)
        xy_tr = tr.stack_xy()

        # initialize test_locs by drawing the a Gaussian fitted to the data
        # number of test locations
        J = 3
        V0 = util.fit_gaussian_draw(xy_tr, J, seed=seed + 1)
        med = util.meddistance(xy_tr, subsample=1000)
        gwidth0 = med**2
        assert gwidth0 > 0

        # optimize
        V_opt, gw2_opt, opt_info = tst.GaussUMETest.optimize_locs_width(
            tr,
            V0,
            gwidth0,
            reg=1e-2,
            max_iter=100,
            tol_fun=1e-5,
            disp=False,
            locs_bounds_frac=100,
            gwidth_lb=None,
            gwidth_ub=None)

        # perform the test using the optimized parameters on the test set
        alpha = 0.01
        ume_opt = tst.GaussUMETest(V_opt,
                                   gw2_opt,
                                   n_simulate=2000,
                                   alpha=alpha)
        test_result = ume_opt.perform_test(te)

        assert test_result['h0_rejected']
        assert util.is_real_num(gw2_opt)
        assert gw2_opt > 0
        assert np.all(np.logical_not((np.isnan(V_opt))))
        assert np.all(np.logical_not((np.isinf(V_opt))))
Exemple #17
0
def test_bms_verbose():
    X = np.random.uniform(0, 200, size=(100, 10))
    pxp, xp, bor, q_m, alpha, f0, f1, niter = bms(X, verbose=True)
    assert np.equal(pxp.sum().round(5), 1)
    assert np.equal(xp.sum().round(5), 1)
    assert (0 <= bor <= 1)
    assert np.all(np.equal(q_m.sum(1).round(5), 1))
    assert np.all(np.greater(alpha, 0))
    assert np.greater_equal(f0, 0)
    assert np.greater_equal(f1, 0)
    assert np.greater(niter, 0)
Exemple #18
0
 def fit(self,X,T,ranked_pairs,smoothed_pairs,ranked_pair_weights=None,smoothed_pair_weights=None):
     """
         Fit the DSSL loss
         Args:
             X - (n_samples,n_features) ndarray:
                 Design matrix
     
             T - (n_samples,) ndarray of:
                 Vector of continuous timestamps
     
             ranked_pairs - (n_ranked_pairs,2) integer ndarray:
                 Contains ranked pairs of samples. Model will try to find 
                 parameters such that score(ranked_pairs[i,0]) > score(ranked_pairs[i,1])
                 for all i.
         
             smoothed_pairs - (n_smoothed_pairs,2) integer ndarray:
                 Contains pairs of samples that are close in time. Model will 
                 try to find parameters such that minimizes 
                 (score(ranked_pairs[i,0]) - score(ranked_pairs[i,1]))**2/(T(ranked_pairs[i,0]) - T(ranked_pairs[i,1]))**2
                 for all i.
     
             ranked_pair_weights - (n_ranked_pairs,) float ndarray:
                 Contains sample weights for each of the ranked pairs.
 
             smoothed_pair_weights - (n_smoothed_pairs,) float ndarray:
                 Contains sample weights for each of the smoothed pairs.
     """
     assert X.shape[0] > 0
     assert T.shape == (X.shape[0],)
     assert ranked_pairs is None or np.issubdtype(ranked_pairs.dtype, np.dtype(int).type)
     assert smoothed_pairs is None or np.issubdtype(smoothed_pairs.dtype, np.dtype(int).type)
     
     assert ranked_pairs is None or np.all(np.logical_and(ranked_pairs >= 0,ranked_pairs <= X.shape[0]))
     assert smoothed_pairs is None or np.all(np.logical_and(smoothed_pairs >= 0,smoothed_pairs <= X.shape[0]))
     
     assert ranked_pairs is None or np.all(ranked_pairs[:,0] != ranked_pairs[:,1])
     assert smoothed_pairs is None or np.all(smoothed_pairs[:,0] != smoothed_pairs[:,1])
     
     # get obj
     obj = self.get_obj(X,T,ranked_pairs,smoothed_pairs,ranked_pair_weights,smoothed_pair_weights)
     
     # get the gradient function using autograd  
     gfun = grad(obj)
     
     # init params
     w0 = np.zeros(X.shape[1])
     
     # optimize objective
     self.res = minimize(obj,w0,method="L-BFGS-B",jac=gfun,options={"gtol":self.gtol,"maxiter":self.maxiter,"disp":self.disp},tol=self.tol)
     
     self.set_params(self.res.x)
     
     return self
def test_comparison_grads():
    compare_funs = [
        lambda x, y: np.sum(x < x) + 0.0, lambda x, y: np.sum(x <= y) + 0.0,
        lambda x, y: np.sum(x > y) + 0.0, lambda x, y: np.sum(x >= y) + 0.0,
        lambda x, y: np.sum(x == y) + 0.0, lambda x, y: np.sum(x != y) + 0.0
    ]

    for arg1, arg2 in arg_pairs():
        zeros = (arg1 + arg2) * 0  # get correct shape
        for fun in compare_funs:
            assert np.all(grad(fun)(arg1, arg2) == zeros)
            assert np.all(grad(fun, argnum=1)(arg1, arg2) == zeros)
Exemple #20
0
def solve_sylvester(a, b, q):
    if a.shape == b.shape:
        axes = (0, 2, 1) if a.ndim == 3 else (1, 0)
        if np.all(a == b) and np.all(np.abs(a - np.transpose(a, axes)) < 1e-12):
            eigvals, eigvecs = eigh(a)
            if np.all(eigvals >= 1e-12):
                tilde_q = np.transpose(eigvecs, axes) @ q @ eigvecs
                tilde_x = tilde_q / (eigvals[..., :, None] + eigvals[..., None, :])
                return eigvecs @ tilde_x @ np.transpose(eigvecs, axes)

    return np.vectorize(
        scipy.linalg.solve_sylvester, signature="(m,m),(n,n),(m,n)->(m,n)"
    )(a, b, q)
Exemple #21
0
 def x_star(self):
     if not hasattr(self, 'x_opt'):
         self.x_opt = solve_qp(
             P=self.Q,
             q=self.q,
             A=self.A if not np.all((self.A == 0)) else None,
             b=self.b if not np.all((self.A == 0)) else
             None,  # check for A since b can be zero
             G=self.G if not np.all((self.G == 0)) else None,
             h=self.h if not np.all((self.G == 0)) else
             None,  # check for G since h can be zero
             solver='cvxopt')
     return self.x_opt
Exemple #22
0
def test_comparison_grads():
    compare_funs = [lambda x, y : np.sum(x <  x) + 0.0,
                    lambda x, y : np.sum(x <= y) + 0.0,
                    lambda x, y : np.sum(x >  y) + 0.0,
                    lambda x, y : np.sum(x >= y) + 0.0,
                    lambda x, y : np.sum(x == y) + 0.0,
                    lambda x, y : np.sum(x != y) + 0.0]

    with warnings.catch_warnings(record=True) as w:
        for arg1, arg2 in arg_pairs():
            zeros = (arg1 + arg2) * 0 # get correct shape
            for fun in compare_funs:
                assert np.all(grad(fun)(arg1, arg2) == zeros)
                assert np.all(grad(fun, argnum=1)(arg1, arg2) == zeros)
Exemple #23
0
def init_multicomponent_source(sky_coord, frame, observation, bg_rms, flux_percentiles=None,
                               thresh=1., symmetric=True, monotonic=True):
    """Initialize multiple components
    See `MultiComponentSource` for a description of the parameters
    """
    if flux_percentiles is None:
        flux_percentiles = [25]
    # Initialize the first component as an extended source
    sed, morph = init_extended_source(sky_coord, frame, observation, bg_rms,
                                      thresh, symmetric, monotonic)
    # create a list of components from base morph by layering them on top of
    # each other so that they sum up to morph
    K = len(flux_percentiles) + 1

    Ny, Nx = morph.shape
    morphs = np.zeros((K, Ny, Nx), dtype=morph.dtype)
    morphs[0, :, :] = morph[:, :]
    max_flux = morph.max()
    percentiles_ = np.sort(flux_percentiles)
    last_thresh = 0
    for k in range(1, K):
        perc = percentiles_[k - 1]
        flux_thresh = perc * max_flux / 100
        mask_ = morph > flux_thresh
        morphs[k - 1][mask_] = flux_thresh - last_thresh
        morphs[k][mask_] = morph[mask_] - flux_thresh
        last_thresh = flux_thresh

    # renormalize morphs: initially Smax
    for k in range(K):
        if np.all(morphs[k] <= 0):
            msg = "Zero or negative morphology for component {} at y={}, x={}"
            logger.warning(msg.format(k, *skycoords))
        morphs[k] /= morphs[k].max()

    # optimal SEDs given the morphologies, assuming img only has that source
    seds = get_best_fit_seds(morphs, frame, observation)

    for k in range(K):
        if np.any(seds[k] <= 0):
            # If the flux in all channels is  <=0,
            # the new sed will be filled with NaN values,
            # which will cause the code to crash later
            msg = "Zero or negative SED {} for component {} at y={}, x={}".format(seds[k], k, *sky_coord)
            if np.all(sed <= 0):
                logger.warning(msg)
            else:
                logger.info(msg)

    return seds, morphs
Exemple #24
0
def check_if_selection(r_to_keep, r, k_to_keep, k, L, new_Lt):
    ''' Check if the architecture has changed during the selection procedure
    r_to_keep (dict): The dimensions selected in the network
    r (dict): The original dimensions of the network layers
    k_to_keep (dict): The components selected in the network
    k (dict): The original number of component on each layer
    L (dict): The number of layers in the networks 
    new_Lt (int): The selected number of layers on the common tail.
    --------------------------------------------------------------------------
    returns (Bool): Whether or not the procedure has selected a new architecture
    '''
    
    is_L_unchanged = (L['t'] == new_Lt)
                
    is_rd_unchanged = np.all([len(r_to_keep['d'][l]) == r['d'][l] for l in range(L['d'])])
    is_rt_unchanged = np.all([len(r_to_keep['t'][l]) == r['t'][l] for l in range(new_Lt)])
    is_rc_unchanged = np.all([len(r_to_keep['c'][l]) == r['c'][l] for l in range(L['c'] + 1)])
    is_r_unchanged = np.all([is_rd_unchanged, is_rc_unchanged, is_rt_unchanged])
    
    is_kd_unchanged = np.all([len(k_to_keep['d'][l]) == k['d'][l] for l in range(L['d'])])
    is_kt_unchanged = np.all([len(k_to_keep['t'][l]) == k['t'][l] for l in range(new_Lt)])
    is_kc_unchanged = np.all([len(k_to_keep['c'][l]) == k['c'][l] for l in range(L['c'] + 1)])
    is_k_unchanged = np.all([is_kd_unchanged, is_kc_unchanged, is_kt_unchanged])
                
    is_selection = not(is_r_unchanged & is_k_unchanged & is_L_unchanged)
    
    return is_selection
Exemple #25
0
def is_min_architecture_reached(k, r, n_clusters):
    '''
    k (dict of list): The number of components on each layer of each head and tail
    r (dict of list): The dimensions of each layer of each head and tail
    n_clusters (int): The number of clusters to look for in the data
    ------------------------------------------------------------------------
    returns (Bool): True if the minimal network architecture has been reached 
                    False otherwise
    '''

    # Check that common tail is minimal
    first_layer_k_min = k['t'][0] == n_clusters  # geq or eq ?
    following_layers_k_min = np.all([kk <= 2 for kk in k['t'][1:]])
    is_tail_k_min = first_layer_k_min & following_layers_k_min
    is_tail_r_min = r['t'] == [2, 1]

    is_tail_min = is_tail_k_min & is_tail_r_min

    # Check that the heads are minimal
    is_head_k_min = {'c': True, 'd': True}
    is_head_r_min = {'c': True, 'd': True}

    Lt = len(k['t'])

    for h in ['c', 'd']:
        Lh = len(k[h])
        # If more than one layer on head, then arch is not minimal
        if Lh >= 2:
            is_head_k_min[h] = False
            is_head_r_min[h] = False
            continue

        for l in range(Lh):
            # If all k >= 2
            if k[h][l] > 1:
                is_head_k_min[h] = False

            # The first dimension of the continuous dimension is imposed
            if (h == 'd') | (l > 0):
                # k is min if r3 = r2 + 1 = r1 + 2 ...
                if r[h][l] > Lh + Lt - l:
                    is_head_r_min[h] = False

    are_heads_min = np.all(list(is_head_k_min.values())) \
                        & np.all(list(is_head_r_min.values()))

    is_arch_min = are_heads_min & is_tail_min

    return is_arch_min
Exemple #26
0
    def params(self, value):
        Ps, rs, ps = value
        assert Ps.shape == (self.K, self.K)
        assert np.allclose(np.diag(Ps), 0)
        assert np.allclose(Ps.sum(1), 1)
        assert rs.shape == (self.K)
        assert rs.dtype == int
        assert np.all(rs > 0)
        assert ps.shape == (self.K)
        assert np.all(ps > 0)
        assert np.all(ps < 1)
        self.Ps, self.rs, self.ps = Ps, rs, ps

        # Reset the transition matrix
        self._transition_matrix = None
Exemple #27
0
    def test_basic(self):
        """
        Nothing special. Just test basic things.
        """
        # sample
        n = 10
        d = 3
        with util.NumpySeedContext(seed=29):
            X = np.random.randn(n, d) * 3
            k = kernel.KGauss(sigma2=1)
            K = k.eval(X, X)

            self.assertEqual(K.shape, (n, n))
            self.assertTrue(np.all(K >= 0 - 1e-6))
            self.assertTrue(np.all(K <= 1 + 1e-6), "K not bounded by 1")
Exemple #28
0
    def _invert(self, data, input=None, mask=None, tag=None):
        """
        Approximate invert the linear emission model with the pseudoinverse

        y = Cx + d + noise; C orthogonal.
        xhat = (C^T C)^{-1} C^T (y-d)
        """
        assert self.single_subspace, "Can only invert with a single emission model"

        C, F, d = self.Cs[0], self.Fs[0], self.ds[0]
        C_pseudoinv = np.linalg.solve(C.T.dot(C), C.T).T

        # Account for the bias
        bias = input.dot(F.T) + d

        if not np.all(mask):
            data = interpolate_data(data, mask)
            # We would like to find the PCA coordinates in the face of missing data
            # To do so, alternate between running PCA and imputing the missing entries
            for itr in range(25):
                mu = (data - bias).dot(C_pseudoinv)
                data[:, ~mask[0]] = (mu.dot(C.T) + bias)[:, ~mask[0]]

        # Project data to get the mean
        return (data - bias).dot(C_pseudoinv)
Exemple #29
0
def test_softmax_partition_potential():
    x = np.arange(10).astype(np.float)
    B = 1.5
    potential, partition = softmax_components(B * x)
    component_sm = potential / partition
    original_sm = softmax(B * x)
    assert (np.all(component_sm == original_sm))
Exemple #30
0
def test_getquantile():
    x = np.linspace(0, 1, 100)
    y = getquantile(x, lower=0.25, upper=0.5)
    assert (np.equal(y.mean(), 0.25))

    y = getquantile(x, lower=0.25, upper=0.5, return_indices=True)
    assert (np.all(np.equal(y, np.arange(25, 50))))
Exemple #31
0
    def initialize(self, datas, inputs=None, masks=None, tags=None):
        data = np.concatenate(datas)
        ddata = np.concatenate([np.gradient(d, axis=0) for d in datas])
        ddata = (ddata - ddata.mean(0)) / ddata.std(0)
        input = np.concatenate(inputs)
        T = data.shape[0]

        # Cluster the data and its gradient before initializing
        from sklearn.cluster import KMeans
        km = KMeans(self.K)
        # km.fit(np.column_stack((data, ddata)))
        km.fit(data)
        z = km.labels_[:-self.lags]

        from sklearn.linear_model import LinearRegression

        for k in range(self.K):
            ts = np.where(z == k)[0]
            x = np.column_stack([data[ts + l]
                                 for l in range(self.lags)] + [input[ts]])
            y = data[ts + self.lags]
            lr = LinearRegression().fit(x, y)
            self.As[k] = lr.coef_[:, :self.D * self.lags]
            self.Vs[k] = lr.coef_[:, self.D * self.lags:]
            self.bs[k] = lr.intercept_

            resid = y - lr.predict(x)
            sigmas = np.var(resid, axis=0)
            self.inv_sigmas[k] = np.log(sigmas + 1e-16)
            assert np.all(np.isfinite(self.inv_sigmas))
Exemple #32
0
def test_flatten_dict():
    val = {'k':  npr.random((4, 4)),
           'k2': npr.random((3, 3)),
           'k3': 3.0,
           'k4': [1.0, 4.0, 7.0, 9.0]}

    vect, unflatten = flatten(val)
    val_recovered = unflatten(vect)
    vect_2, _ = flatten(val_recovered)
    assert np.all(vect == vect_2)
    def test_optimize_locs_width(self):
        """
        Test the function optimize_locs_width(..). Make sure it does not return 
        unusual results.
        """
        # sample source 
        n = 600
        dim = 2
        seed = 17

        ss = data.SSGaussMeanDiff(dim, my=1.0)
        #ss = data.SSGaussVarDiff(dim)
        #ss = data.SSSameGauss(dim)
        # ss = data.SSBlobs()
        dim = ss.dim()

        dat = ss.sample(n, seed=seed)
        tr, te = dat.split_tr_te(tr_proportion=0.5, seed=10)
        xy_tr = tr.stack_xy()

        # initialize test_locs by drawing the a Gaussian fitted to the data
        # number of test locations
        J = 3
        V0 = util.fit_gaussian_draw(xy_tr, J, seed=seed+1)
        med = util.meddistance(xy_tr, subsample=1000)
        gwidth0 = med**2
        assert gwidth0 > 0

        # optimize
        V_opt, gw2_opt, opt_info = tst.GaussUMETest.optimize_locs_width(tr, V0, gwidth0, reg=1e-2,
            max_iter=100,  tol_fun=1e-5, disp=False, locs_bounds_frac=100,
            gwidth_lb=None, gwidth_ub=None)

        # perform the test using the optimized parameters on the test set
        alpha = 0.01
        ume_opt = tst.GaussUMETest(V_opt, gw2_opt, n_simulate=2000, alpha=alpha)
        test_result = ume_opt.perform_test(te)

        assert test_result['h0_rejected']
        assert util.is_real_num(gw2_opt)
        assert gw2_opt > 0
        assert np.all(np.logical_not((np.isnan(V_opt))))
        assert np.all(np.logical_not((np.isinf(V_opt))))
Exemple #34
0
def test_flatten():
    r = np.random.randn
    x = (1.0, r(2,3), [r(1,4), {'x': 2.0, 'y': r(4,2)}])
    x_flat, unflatten = flatten(x)
    assert x_flat.shape == (20,)
    assert x_flat[0] == 1.0
    assert np.all(x_flat == flatten(unflatten(x_flat))[0])

    y = (1.0, 2.0, [3.0, {'x': 2.0, 'y': 4.0}])
    y_flat, unflatten = flatten(y)
    assert y_flat.shape == (5,)
    assert y == unflatten(y_flat)
Exemple #35
0
    def log_likelihood(self, u=None, fluxes=None, shape=None):
        """ conditional likelihood of source conditioned on photon
        sampled images """
        # args passed in or from source's own params
        u      = self.params.u      if u is None else u
        fluxes = self.params.fluxes if fluxes is None else fluxes
        shape  = self.params.shape  if shape is None else shape
        assert np.all(~np.isnan(fluxes)), 'passing in NAN fluxes.'

        # for each source image, compute per pixel poisson likelihood term
        ll = 0
        for n, (samp_img, fits_img, pixel_grid) in enumerate(self.sample_image_list):
            # grab the patch the sample_image corresponds to (every other 
            # pixel is a zero value)
            ylim, xlim = (samp_img.y0, samp_img.y1), \
                         (samp_img.x0, samp_img.x1)

            # photon scatter image (from psf and galaxy extent) aligned w/ patch
            psf_ns, _, _ = \
                self.compute_scatter_on_pixels(fits_image=fits_img,
                                               u=u, shape=shape,
                                               xlim=xlim, ylim=ylim,
                                               pixel_grid=pixel_grid)

            # convert parameter flux to fits_image specific photon count flux
            band_flux = self.flux_in_image(fits_img, fluxes=fluxes)
            if psf_ns is None:
                ll_img = - band_flux * np.sum(fits_img.weights)
                ll    += ll_img
                continue

            # compute model patch means and the sum of means outside patch (should be small...)
            model_patch   = band_flux * psf_ns

            # compute poisson likelihood of each pixel - note that 
            # the last term would be sum(model_patch) - model_outside, which is 
            # just equal to band_flux * sum(fits_img.weights)
            mask  = (model_patch > 0.)
            ll_img = np.sum( np.log(model_patch[mask]) *
                             np.array(samp_img.data)[mask] ) - \
                             band_flux*np.sum(fits_img.weights)

            ### debug
            if np.isnan(ll_img):
                print "NAN"
                print "model patch zeros: ", np.sum(model_patch==0)
                print "band flux ", band_flux

            ll += ll_img
        return ll
Exemple #36
0
def natural_predict(J, h, J11, J12, J22, logZ):
    # convert from natural parameter to the usual J definitions
    J, J11, J12, J22 = -2*J, -2*J11, -J12, -2*J22

    L = np.linalg.cholesky(J + J11)
    v = solve_triangular(L, h)
    lognorm = 1./2*np.dot(v,v) - np.sum(np.log(np.diag(L)))
    h_predict = -np.dot(J12.T, solve_triangular(L, v, trans='T'))

    temp = solve_triangular(L, J12)
    J_predict = J22 - np.dot(temp.T, temp)

    assert np.all(np.linalg.eigvals(J_predict) > 0)

    return (-1./2*J_predict, h_predict), lognorm + logZ
 def fit(self, samples):
     import sklearn.mixture
     m = sklearn.mixture.GMM(self.num_components, "full")
     m.fit(samples)
     self.comp_lprior = log(m.weights_)
     self.dist_cat = categorical(exp(self.comp_lprior))
     self.comp_dist = [mvt(m.means_[i], m.covars_[i], self.df) for i in range(self.comp_lprior.size)]
     self.dim = m.means_[0].size
     #self._e_step()
     if False:        
         old = -1
         i = 0
         while not np.all(old == self.resp):
             i += 1
             old = self.resp.copy()
             self._e_step()
             self._m_step()
             print(np.sum(old == self.resp)/self.resp.size)
         #print("Convergence after",i,"iterations")
         self.dist_cat = categorical(exp(self.comp_lprior))
Exemple #38
0
    def _set_transmat(self, transmat_val):
        if transmat_val is None:
            transmat = np.tile(1.0 / self.n_components,
                               (self.n_components, self.n_components))
        else:
            transmat_val[np.isnan(transmat_val)] = 0.0
            normalize(transmat_val, axis=1)

            if (np.asarray(transmat_val).shape == (self.n_components,
                                                   self.n_components)):
                transmat = np.copy(transmat_val)
            elif transmat_val.shape[0] == self.n_unique:
                transmat = self._ntied_transmat(transmat_val)
            else:
                raise ValueError("cannot match shape of transmat")

        if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
            raise ValueError('Rows of transmat must sum to 1.0')
        self._log_transmat = np.log(np.asarray(transmat).copy())
        underflow_idx = np.isnan(self._log_transmat)
        self._log_transmat[underflow_idx] = NEGINF
Exemple #39
0
def fit_gaussian_draw(X, J, seed=28, reg=1e-7, eig_pow=1.0):
    """
    Fit a multivariate normal to the data X (n x d) and draw J points 
    from the fit. 
    - reg: regularizer to use with the covariance matrix
    - eig_pow: raise eigenvalues of the covariance matrix to this power to construct 
        a new covariance matrix before drawing samples. Useful to shrink the spread 
        of the variance.
    """
    with NumpySeedContext(seed=seed):
        d = X.shape[1]
        mean_x = np.mean(X, 0)
        cov_x = np.cov(X.T)
        if d==1:
            cov_x = np.array([[cov_x]])
        [evals, evecs] = np.linalg.eig(cov_x)
        evals = np.maximum(0, np.real(evals))
        assert np.all(np.isfinite(evals))
        evecs = np.real(evecs)
        shrunk_cov = evecs.dot(np.diag(evals**eig_pow)).dot(evecs.T) + reg*np.eye(d)
        V = np.random.multivariate_normal(mean_x, shrunk_cov, J)
    return V
Exemple #40
0
    def compute_rotated_map(self, rotation):
        """
        Compute stellar maps projected on the plane of the sky for a given rotation of the star
        Args:
            rotation (float) : rotation around the star in degrees given as [longitude, latitude] in degrees
        
        Returns:
            pixel_unique (int) : vector with the "active" healpix pixels
            pixel_map (int) : map showing the healpix pixel projected on the plane of the sky
            mu_pixel (float): map of the astrocentric angle for each pixel on the plane of the sky (zero for pixels not in the star)
            T_pixel (float): map of temperatures for each pixel on the plane of the sky
        """
        mu_pixel = np.zeros_like(self.mu_angle)
        T_pixel = np.zeros_like(self.mu_angle)

# Get the projection of the healpix pixel indices on the plane of the sky
        pixel_map = self.projector.projmap(self.indices, self.f_vec2pix, rot=rotation)[:,0:int(self.npix/2)]

# Get the unique elements in the vector
        pixel_unique = np.unique(pixel_map)
        
# Now loop over all unique pixels, filling up the array of the projected map with the mu and temeperature values
        for j in range(len(pixel_unique)):
            ind = np.where(pixel_map == pixel_unique[j])            

            if (np.all(np.isfinite(self.mu_angle[ind[0],ind[1]]))):
                if (self.mu_angle[ind[0],ind[1]].size == 0):
                    value = 0.0
                else:                    
                    value = np.nanmean(self.mu_angle[ind[0],ind[1]])
                    mu_pixel[ind[0],ind[1]] = value

                    T_pixel[ind[0],ind[1]] = self.temperature_map[int(pixel_unique[j])]
            else:
                mu_pixel[ind[0],ind[1]] = 0.0
                T_pixel[ind[0],ind[1]] = 0.0

        return pixel_unique, pixel_map, mu_pixel, T_pixel
Exemple #41
0
def test_comparison_grads():
    compare_funs = [lambda x, y : np.sum(x <  x),
                    lambda x, y : np.sum(x <= y),
                    lambda x, y : np.sum(x >  y),
                    lambda x, y : np.sum(x >= y),
                    lambda x, y : np.sum(x == y),
                    lambda x, y : np.sum(x != y)]

    for arg1, arg2 in arg_pairs():
        zeros = (arg1 + arg2) * 0 # get correct shape
        for fun in compare_funs:
            d_fun_0 = lambda x, y : to_scalar(grad(fun, 0)(x, y))
            d_fun_1 = lambda x, y : to_scalar(grad(fun, 1)(x, y))
            assert np.all(grad(fun)(arg1, arg2) == zeros)
            assert np.all(grad(fun, argnum=1)(arg1, arg2) == zeros)
            assert np.all(grad(d_fun_0)(arg1, arg2) == zeros)
            assert np.all(grad(d_fun_1, argnum=1)(arg1, arg2) == zeros)
            assert np.all(grad(d_fun_0)(arg1, arg2) == zeros)
            assert np.all(grad(d_fun_1, argnum=1)(arg1, arg2) == zeros)
Exemple #42
0
    def precompute_rotation_maps(self, rotations=None):
        """
        Compute the averaged spectrum on the star for a given temperature map and for a given rotation
        Args:
            rotations (float) : [N_phases x 2] giving [longitude, latitude] in degrees for each phase
        
        Returns:
            None
        """
        if (rotations is None):
            print("Use some angles for the rotations")
            return

        self.n_phases = rotations.shape[0]

        self.avg_mu = [None] * self.n_phases
        self.avg_v = [None] * self.n_phases
        self.velocity = [None] * self.n_phases
        self.n_pixel_unique = [None] * self.n_phases
        self.n_pixels = [None] * self.n_phases
        self.pixel_unique = [None] * self.n_phases

        for loop in range(self.n_phases):
            mu_pixel = np.zeros_like(self.mu_angle)
            v_pixel = np.zeros_like(self.vel_projection)
        
            pixel_map = self.projector.projmap(self.indices, self.f_vec2pix, rot=rotations[loop,:])[:,0:int(self.npix/2)]
            pixel_unique = np.unique(pixel_map[np.isfinite(pixel_map)])

            for j in range(len(pixel_unique)):
                ind = np.where(pixel_map == pixel_unique[j])

                if (np.all(np.isfinite(self.mu_angle[ind[0],ind[1]]))):
                    if (self.mu_angle[ind[0],ind[1]].size == 0):
                        mu_pixel[ind[0],ind[1]] = 0.0
                        v_pixel[ind[0],ind[1]] = 0.0
                    else:                    
                        
                        if (self.clv):
                            value = np.nanmean(self.mu_angle[ind[0],ind[1]])
                        else:
                            value = 1.0

                        mu_pixel[ind[0],ind[1]] = value

                        value = np.nanmean(self.vel_projection[ind[0],ind[1]])
                        v_pixel[ind[0],ind[1]] = value
                else:
                    mu_pixel[ind[0],ind[1]] = 0.0
                    v_pixel[ind[0],ind[1]] = 0.0

            self.n_pixel_unique[loop] = len(pixel_unique)
            self.avg_mu[loop] = np.zeros(self.n_pixel_unique[loop])
            self.avg_v[loop] = np.zeros(self.n_pixel_unique[loop])
            self.velocity[loop] = np.zeros(self.n_pixel_unique[loop])
            self.n_pixels[loop] = np.zeros(self.n_pixel_unique[loop], dtype='int')
            self.pixel_unique[loop] = pixel_unique.astype('int')

            for i in range(len(pixel_unique)):
                ind = np.where(pixel_map == pixel_unique[i])
                self.n_pixels[loop][i] = len(ind[0])
                self.avg_mu[loop][i] = np.unique(mu_pixel[ind[0], ind[1]])
                self.avg_v[loop][i] = np.unique(v_pixel[ind[0], ind[1]])            
                self.velocity[loop][i] = self.avg_mu[loop][i] * self.avg_v[loop][i]
Exemple #43
0
def test_flatten_complex():
    val = 1 + 1j
    flat, unflatten = flatten(val)
    assert np.all(val == unflatten(flat))
Exemple #44
0
def test_flatten_unflatten():
    for vs in everything:
        v = npr.randn(vs.size)
        v2 = vs.flatten(vs.unflatten(v))
        assert np.all(v2 == v), \
            report_flatten_unflatten(vs, v, v2)
Exemple #45
0
def test_flatten_empty():
    val = (npr.randn(4), [npr.randn(3,4), 2.5], (), (2.0, [1.0, npr.randn(2)]))
    vect, unflatten = flatten(val)
    val_recovered = unflatten(vect)
    vect_2, _ = flatten(val_recovered)
    assert np.all(vect == vect_2)
Exemple #46
0
    test_sampler = np.random.permutation(len(test_labels))[:100]
    train_sampler = np.random.permutation(len(train_labels))[:1000]
    train_images = train_images[train_sampler]
    train_labels = train_labels[train_sampler]
    test_images = test_images[test_sampler]
    test_labels = test_labels[test_sampler]
    N_data = train_images.shape[0]
    
    from sklearn import neighbors
    train_images_3 = np.reshape(train_images, (1000,28*28))
    test_images_3 = np.reshape(test_images, (100,28*28))
    clf = neighbors.KNeighborsClassifier()
    clf.fit(train_images_3,train_labels)
    res = clf.predict(test_images_3)
    res2 = [np.all(x) for x in (res==test_labels)]
    print ('KNN')
    print ( np.sum(res2) / 100.)
    
    # Make neural net functions
    N_weights, pred_fun, loss_fun, \
        frac_err = make_nn_funs(input_shape, layer_specs, L2_reg)
    loss_grad = grad(loss_fun)

    # Initialize weights
    rs = npr.RandomState()
    W = rs.randn(N_weights) * param_scale

    print("    Epoch      |    Train err  |   Test error  ")
    def print_perf(epoch, W):
        test_perf  = frac_err(W, test_images, test_labels)
Exemple #47
0
def unflatten_tracing():
    val = [npr.randn(4), [npr.randn(3,4), 2.5], (), (2.0, [1.0, npr.randn(2)])]
    vect, unflatten = flatten(val)
    def f(vect): return unflatten(vect)
    flatten2, _ = make_vjp(f)(vect)
    assert np.all(vect == flatten2(val))
Exemple #48
0
def is_posdef(A):
    return np.allclose(A, A.T) and np.all(np.linalg.eigvalsh(A) > 0.)
Exemple #49
0
def is_psd(A):
    return np.allclose(A, A.T) and np.all(np.linalg.eigvalsh(A) >= 0.)
Exemple #50
0
def natural_condition_on_general(J, h, Jo, ho, logZo):
    Jo = Jo if Jo.ndim == 2 else np.diag(Jo)
    assert np.all(np.linalg.eigvals(-2*(J + Jo)) > 0)
    return (J + Jo, h + ho), logZo