Exemple #1
0
def test_rts_backward_step():
    npr.seed(0)
    n = 3

    Jns = rand_psd(n)
    hns = npr.randn(n)
    mun = npr.randn(n)

    Jnp = rand_psd(n)
    hnp = npr.randn(n)

    Jf = rand_psd(n) + 10*np.eye(n)
    hf = npr.randn(n)

    bigJ = rand_psd(2*n)
    J11, J12, J22 = -1./2*bigJ[:n,:n], -bigJ[:n,n:], -1./2*bigJ[n:,n:]

    next_smooth = -1./2*Jns, hns, mun
    next_pred = -1./2*Jnp, hnp
    filtered = -1./2*Jf, hf

    pair_param = J11, J12, J22, 0.

    Js1, hs1, (mu1, ExxT1, ExxnT1) = natural_rts_backward_step(
        next_smooth, next_pred, filtered, pair_param)
    Js2, hs2, (mu2, ExxT2, ExnxT2) = rts_backward_step(
        next_smooth, next_pred, filtered, pair_param)

    assert np.allclose(Js1, Js2)
    assert np.allclose(hs1, hs2)

    assert np.allclose(mu1, mu2)
    assert np.allclose(ExxT1, ExxT2)
    assert np.allclose(ExxnT1, ExnxT2)
Exemple #2
0
    def add_data(self, S, F=None):
        """
        Add a data set to the list of observations.
        First, filter the data with the impulse response basis,
        then instantiate a set of parents for this data set.

        :param S: a TxK matrix of of event counts for each time bin
                  and each process.
        """
        assert isinstance(S, np.ndarray) and S.ndim == 2 and S.shape[1] == self.K \
               and np.amin(S) >= 0 and S.dtype == np.int, \
               "Data must be a TxK array of event counts"

        T = S.shape[0]

        if F is None:
            # Filter the data into a TxKxB array
            Ftens = self.basis.convolve_with_basis(S)

            # Flatten this into a T x (KxB) matrix
            # [F00, F01, F02, F10, F11, ... F(K-1)0, F(K-1)(B-1)]
            F = Ftens.reshape((T, self.K * self.B))
            assert np.allclose(F[:,0], Ftens[:,0,0])
            if self.B > 1:
                assert np.allclose(F[:,1], Ftens[:,0,1])
            if self.K > 1:
                assert np.allclose(F[:,self.B], Ftens[:,1,0])

            # Prepend a column of ones
            F = np.hstack((np.ones((T,1)), F))

        for k,node in enumerate(self.nodes):
            node.add_data(F, S[:,k])
Exemple #3
0
def test_make_diagonal():
    def fun(D):
        return to_scalar(np.make_diagonal(D, axis1=-1, axis2=-2))

    D = np.random.randn(4)
    A = np.make_diagonal(D, axis1=-1, axis2=-2)
    assert np.allclose(np.diag(A), D)
    check_grads(fun, D)

    D = np.random.randn(3, 4)
    A = np.make_diagonal(D, axis1=-1, axis2=-2)
    assert all([np.allclose(np.diag(A[i]), D[i]) for i in range(3)])
    check_grads(fun, D)
Exemple #4
0
def test_checkpoint_correctness():
    bar = lambda x, y: 2*x + y + 5
    checkpointed_bar = checkpoint(bar)
    foo = lambda x: bar(x, x/3.) + bar(x, x**2)
    foo2 = lambda x: checkpointed_bar(x, x/3.) + checkpointed_bar(x, x**2)
    assert np.allclose(foo(3.), foo2(3.))
    assert np.allclose(grad(foo)(3.), grad(foo2)(3.))

    baz = lambda *args: sum(args)
    checkpointed_baz = checkpoint(baz)
    foobaz = lambda x: baz(x, x/3.)
    foobaz2 = lambda x: checkpointed_baz(x, x/3.)
    assert np.allclose(foobaz(3.), foobaz2(3.))
    assert np.allclose(grad(foobaz)(3.), grad(foobaz2)(3.))
Exemple #5
0
def test_getter():
    def fun(input_tuple):
        A = np.sum(input_tuple[0])
        B = np.sum(input_tuple[1])
        C = np.sum(input_tuple[1])
        return A + B + C

    d_fun = grad(fun)
    input_tuple = (npr.randn(5, 6),
                   npr.randn(4, 3),
                   npr.randn(2, 4))

    result = d_fun(input_tuple)
    assert np.allclose(result[0], np.ones((5, 6)))
    assert np.allclose(result[1], 2 * np.ones((4, 3)))
    assert np.allclose(result[2], np.zeros((2, 4)))
Exemple #6
0
def test_logit():
    """ simple test to ensure logistic(logit(x)) = x """
    p = rand_logistic_norm(10, 4)
    x = logit(p)
    pt = logistic(x)
    assert np.allclose(p, pt), "Test logit fails!"
    print "test_logit passes!"
Exemple #7
0
def test_getter():
    def fun(input_dict):
        A = np.sum(input_dict['item_1'])
        B = np.sum(input_dict['item_2'])
        C = np.sum(input_dict['item_2'])
        return A + B + C

    d_fun = grad(fun)
    input_dict = {'item_1' : npr.randn(5, 6),
                  'item_2' : npr.randn(4, 3),
                  'item_X' : npr.randn(2, 4)}

    result = d_fun(input_dict)
    assert np.allclose(result['item_1'], np.ones((5, 6)))
    assert np.allclose(result['item_2'], 2 * np.ones((4, 3)))
    assert np.allclose(result['item_X'], np.zeros((2, 4)))
Exemple #8
0
    def _set_startprob(self, startprob):

        if startprob is None:
            startprob = np.tile(1.0 / self.n_components, self.n_components)
        else:
            startprob = np.asarray(startprob, dtype=np.float)

            if not np.alltrue(startprob <= 1.0):
                normalize(startprob)

            if len(startprob) != self.n_components:
                if len(startprob) == self.n_unique:
                    startprob_split = np.copy(startprob) / (1.0+self.n_tied)
                    startprob = np.zeros(self.n_components)
                    for u in range(self.n_unique):
                        for t in range(self.n_chain):
                            startprob[u*(self.n_chain)+t] = \
                                startprob_split[u].copy()
                else:
                    raise ValueError("cannot match shape of startprob")

        if not np.allclose(np.sum(startprob), 1.0):
            raise ValueError('startprob must sum to 1.0')

        self._log_startprob = np.log(np.asarray(startprob).copy())
Exemple #9
0
def test_fast_conv_grad():
    skip = 1
    block_size = (11, 11)
    depth = 1
    img   = np.random.randn(51, 51, depth)
    filt  = np.dstack([cv.gauss_filt_2D(shape=block_size,sigma=2) for k in range(depth)])
    filt = cv.gauss_filt_2D(shape=block_size, sigma=2)
    def loss_fun(filt):
        out = fc.convolve(filt, img)
        return np.sum(np.sin(out) + out**2)
    loss_fun(filt)
    loss_grad = grad(loss_fun)

    def loss_fun_slow(filt):
        out = auto_convolve(img.squeeze(), filt, mode='valid') 
        return np.sum(np.sin(out) + out**2)
    loss_fun_slow(filt)
    loss_grad_slow = grad(loss_fun_slow)

    # compare gradient timing
    loss_grad_slow(filt)
    loss_grad(filt)

    ## check numerical gradients
    num_grad = np.zeros(filt.shape)
    for i in xrange(filt.shape[0]):
        for j in xrange(filt.shape[1]):
            de = np.zeros(filt.shape)
            de[i, j] = 1e-4
            num_grad[i,j] = (loss_fun(filt + de) - loss_fun(filt - de)) / (2*de[i,j])

    assert np.allclose(loss_grad(filt), num_grad), "convolution gradient failed!"
Exemple #10
0
def test_rts_1():
    npr.seed(0)
    n = 3

    # inputs
    Jns = rand_psd(n) + 10*np.eye(n)
    hns = npr.randn(n)
    Jnp = rand_psd(n)
    hnp = npr.randn(n)
    Jf = rand_psd(n)
    hf = npr.randn(n)

    # constants
    bigJ = rand_psd(2*n)
    J11, J12, J22 = bigJ[:n,:n], bigJ[:n,n:], bigJ[n:,n:]
    L = np.linalg.cholesky(Jns - Jnp + J22)

    # outgrads
    g_Js = npr.randn(n,n)
    g_hs = npr.randn(n)

    def step1(L, hns, hnp, Jf, hf):
        temp = solve_triangular(L, J12.T)
        Js = Jf + J11 - np.dot(temp.T, temp)
        hs = hf -  np.dot(temp.T, solve_triangular(L, hns - hnp))
        return Js, hs

    # ans
    Js, hs = step1(L, hns, hnp, Jf, hf)

    def fun(args):
        Js, hs = step1(*args)
        return np.sum(g_Js * Js) + np.sum(g_hs * hs)

    g_L1, g_hns1, g_hnp1, g_Jf1, g_hf1 = grad(fun)((L, hns, hnp, Jf, hf))
    g_L2, g_hns2, g_hnp2, g_Jf2, g_hf2 = rts_1_grad(
        g_Js, g_hs,
        Js, hs,
        L, hns, hnp, Jf, hf,
        J11, J12)

    assert np.allclose(g_hns1, g_hns2)
    assert np.allclose(g_hnp1, g_hnp2)
    assert np.allclose(g_Jf1, g_Jf2)
    assert np.allclose(g_hf1, g_hf2)
    assert np.allclose(g_L1, g_L2)
Exemple #11
0
def test_rts_3():
    npr.seed(0)
    n = 3

    # inputs
    L = np.linalg.cholesky(rand_psd(n))
    Sigma = rand_psd(n)
    mu = npr.randn(n)
    mun = npr.randn(n)

    # constants
    J12 = rand_psd(2*n)[:n,n:]

    # outgrads
    g_ExnxT = npr.randn(n,n)
    g_ExxT  = npr.randn(n,n)
    g_Ex    = npr.randn(n)

    def step3(L, Sigma, mu, mun):
        temp2 = np.dot(-J12.T, Sigma)
        Sigma_21 = solve_posdef_from_cholesky(L, temp2)

        ExnxT = Sigma_21 + np.outer(mun, mu)
        ExxT = Sigma + np.outer(mu, mu)

        return mu, ExxT, ExnxT

    # ans
    Ex, ExxT, ExnxT = step3(L, Sigma, mu, mun)

    # compare grads
    def fun(args):
        Ex, ExxT, ExnxT = step3(*args)
        return np.sum(ExnxT * g_ExnxT) + np.sum(ExxT * g_ExxT) + np.sum(Ex * g_Ex)

    g_L1, g_Sigma1, g_mu1, g_mun1 = grad(fun)((L, Sigma, mu, mun))
    g_L2, g_Sigma2, g_mu2, g_mun2 = rts_3_grad(
            g_Ex, g_ExxT, g_ExnxT,
            Ex, ExxT, ExnxT,
            L, Sigma, mu, mun,
            J12)

    assert np.allclose(g_L1, g_L2)
    assert np.allclose(g_Sigma1, g_Sigma2)
    assert np.allclose(g_mu1, g_mu2)
    assert np.allclose(g_mun1, g_mun2)
Exemple #12
0
def test_natural_predict():
    npr.seed(0)
    n = 3

    J = rand_psd(n)
    h = npr.randn(n)
    bigJ = rand_psd(2*n)
    J11, J12, J22 = bigJ[:n,:n], bigJ[:n,n:], bigJ[n:,n:]
    logZ = npr.randn()
    J, J11, J12, J22 = -1./2*J, -1./2*J11, -J12, -1./2*J22

    (J_pred_1, h_pred_1), lognorm1 = _natural_predict(J, h, J11, J12, J22, logZ)
    (J_pred_2, h_pred_2), lognorm2 = __natural_predict(J, h, J11, J12, J22, logZ)

    assert np.allclose(J_pred_1, J_pred_2)
    assert np.allclose(h_pred_1, h_pred_2)
    assert np.isclose(lognorm1, lognorm2)
Exemple #13
0
def test_getter():
    def fun(input_list):
        A = np.sum(input_list[0])
        B = np.sum(input_list[1])
        C = np.sum(input_list[1])
        return A + B + C

    d_fun = grad(fun)
    input_list = [npr.randn(5, 6),
                   npr.randn(4, 3),
                   npr.randn(2, 4)]

    result = d_fun(input_list)
    print result
    assert np.allclose(result[0], np.ones((5, 6)))
    assert np.allclose(result[1], 2 * np.ones((4, 3)))
    assert np.allclose(result[2], np.zeros((2, 4)))
Exemple #14
0
def check_vjp(fun, arg):
    vs_in  = vspace(arg)
    vs_out = vspace(fun(arg))
    autograd_jac  = linear_fun_to_matrix(
        flatten_fun(make_vjp(fun)(arg)[0], vs_out), vs_out).T
    numerical_jac = linear_fun_to_matrix(
        numerical_deriv(flatten_fun(fun, vs_in), vspace_flatten(arg)), vs_in)

    assert np.allclose(autograd_jac, numerical_jac)
Exemple #15
0
def test_nograd():
    # we want this to raise non-differentiability error
    fun = lambda x: np.allclose(x, (x*3.0)/3.0)
    try:
        grad(fun)(np.array([1., 2., 3.]))
    except TypeError:
        pass
    else:
        raise Exception('Expected non-differentiability exception')
Exemple #16
0
def check_equivalent(A, B, rtol=RTOL, atol=ATOL):
    A_vspace = vspace(A)
    B_vspace = vspace(B)
    A_flat = vspace_flatten(A)
    B_flat = vspace_flatten(B)
    assert A_vspace == B_vspace, \
      "VSpace mismatch:\nanalytic: {}\nnumeric: {}".format(A_vspace, B_vspace)
    assert np.allclose(vspace_flatten(A), vspace_flatten(B), rtol=rtol, atol=atol), \
        "Diffs are:\n{}.\nanalytic is:\n{}.\nnumeric is:\n{}.".format(
            A_flat - B_flat, A_flat, B_flat)
Exemple #17
0
def test_dpotrs_grad():
    npr.seed(0)
    n = 3
    s = 5

    J = rand_psd(n)
    h = npr.randn(n, s)
    L = np.linalg.cholesky(J)
    dpotrs = lambda (L, h): solve_triangular(L, solve_triangular(L, h), 'T')
    ans = dpotrs((L, h))

    dotter = npr.randn(*ans.shape)

    assert np.allclose(ans, np.linalg.solve(J, h))

    g_L_1, g_h_1 = grad(lambda x: np.sum(dotter * dpotrs(x)))((L, h))
    g_L_2, g_h_2 = dpotrs_grad(dotter, ans, L, h)

    assert np.allclose(g_L_1, g_L_2)
    assert np.allclose(g_h_1, g_h_2)
Exemple #18
0
def test_jacobian_against_wrapper():
    A = npr.randn(3,3,3)
    fun = lambda x: np.einsum(
        'ijk,jkl->il',
        A, np.sin(x[...,None] * np.tanh(x[None,...])))

    B = npr.randn(3,3)
    jac1 = jacobian(fun)(B)
    jac2 = old_jacobian(fun)(B)

    assert np.allclose(jac1, jac2)
Exemple #19
0
    def testRemapPointsToSegments01(self):
        points  = np.array([[1, 2], [3, 4], [5, 6]])
        indices = np.array([[0, 1], [2, 0]])

        res     = contourloss.remapPointsToSegements(points, indices)
        ans     = np.array([
            [[1, 2], [3, 4]],
            [[5, 6], [1, 2]]
        ])
        self.assertEqual(res.shape, ans.shape)
        self.assertTrue(np.allclose(res, ans))
Exemple #20
0
def test_natural_lognorm_grad():
    npr.seed(0)
    n = 3

    J = rand_psd(n)
    h = npr.randn(n)

    def natural_lognorm((J, h)):
        L = np.linalg.cholesky(J)
        v = solve_triangular(L, h)
        return 1./2*np.dot(v, v) - np.sum(np.log(np.diag(L)))

    g_J_1, g_h_1 = grad(lambda x: np.pi*natural_lognorm(x))((J, h))

    L = np.linalg.cholesky(J)
    v = solve_triangular(L, h)
    g_J_2, g_h_2 = natural_lognorm_grad(np.pi, L, v)

    assert np.allclose(g_J_1, g_J_2)
    assert np.allclose(g_h_1, g_h_2)
Exemple #21
0
def check_equivalent(A, B, rtol=1e-4, atol=1e-6):
    assert eq_class(type(A)) == eq_class(type(B)),\
        "Types are: {0} and {1}".format(eq_class(type(A)), eq_class(type(B)))
    if isinstance(A, (tuple, list)):
        for a, b in zip(A, B): check_equivalent(a, b)
    elif isinstance(A, dict):
        assert len(A) == len(B)
        for k in A: check_equivalent(A[k], B[k])
    else:
        if isinstance(A, np.ndarray):
            assert A.shape == B.shape, "Shapes are {0} and {1}".format(A.shape, B.shape)
        assert np.allclose(A, B, rtol=rtol, atol=atol), "Diffs are: {0}".format(A - B)
Exemple #22
0
def main():
    np.random.seed(1)
    Xtrain, ytrain, params_true, true_fun, ttl = make_data_linreg_1d(21, 'linear')
    
    model = LinregModel(1, True)
    params_init = model.init_params()
    print model
    
    # Check that OLS and BFGS give same result
    params_ols, loss_ols = model.ols_fit(Xtrain, ytrain)
    obj_fun = lambda params: model.objective(params, Xtrain, ytrain)
    grad_fun = lambda params: model.gradient(params, Xtrain, ytrain)
    params_bfgs, loss_bfgs = bfgs(obj_fun, grad_fun, params_init) 
    assert(np.allclose(params_bfgs, params_ols))
    assert(np.allclose(loss_bfgs, loss_ols))

    # Check that analytic gradient and automatic gradient give same result
    # when evaluated on training data
    grad_fun = autograd.grad(obj_fun)
    grad_auto = grad_fun(params_init)
    grad_finite_diff = autograd.util.nd(lambda p : obj_fun(p), params_init)[0]
    grad_analytic = model.gradient(params_init, Xtrain, ytrain)
    assert(np.allclose(grad_auto, grad_finite_diff))
    assert(np.allclose(grad_auto, grad_analytic))

    params_autograd, loss_autograd = bfgs(obj_fun, grad_fun, params_init) 
    assert(np.allclose(params_bfgs, params_autograd))
    assert(np.allclose(loss_bfgs, loss_autograd))
    
    print "All assertions passed"
Exemple #23
0
def test_natural_sample_grad():
    npr.seed(0)
    n = 3
    s = 5

    J = rand_psd(n)
    h = npr.randn(n, s)
    eps = npr.randn(n, s)

    dotter = npr.randn(*eps.shape)

    def natural_sample(J, h, eps):
        L = np.linalg.cholesky(J)
        mu = solve_posdef_from_cholesky(L, h)
        noise = solve_triangular(L, eps, 'T')
        return mu + noise

    g_J_1, g_h_1 = grad(lambda (J, h): np.sum(dotter * natural_sample(J, h, eps)))((J, h))
    g_J_2, g_h_2 = natural_sample_grad(dotter, natural_sample(J, h, eps), J, h, eps)

    assert np.allclose(g_J_1, g_J_2)
    assert np.allclose(g_h_1, g_h_2)
Exemple #24
0
def check_equivalent(A, B, rtol=1e-4, atol=1e-6):
    assert type(A) is type(B),\
        "Types are: {0} and {1}".format(type(A), type(B))
    if isinstance(A, (tuple, list)):
        for a, b in zip(A, B): check_equivalent(a, b)
    elif isinstance(A, dict):
        assert len(A) == len(B)
        for k in A: check_equivalent(A[k], B[k])
    else:
        if isinstance(A, np.ndarray):
            assert A.shape == B.shape, "Shapes are {0} and {1}".format(A.shape, B.shape)
        assert np.allclose(A, B, rtol=rtol, atol=atol), \
            "Diffs are:\n{0}.\nA is:\n{A}.\nB is:\n{B}.".format(A - B, A=A, B=B)
Exemple #25
0
    def compare_samplers(lds, num_samples, seed):
        init_params, pair_params, node_params = lds

        npr.seed(seed)
        messages1, _ = natural_filter_forward_general(
            init_params, pair_params, node_params)
        samples1 = natural_sample_backward_general(messages1, pair_params, num_samples)

        npr.seed(seed)
        dense_messages2, _ = _natural_filter_forward_general(
            init_params, pair_params, node_params)
        samples2 = _natural_sample_backward(dense_messages2, pair_params, num_samples)

        assert np.allclose(samples1, samples2)
Exemple #26
0
def test_jacobian_against_stacked_grads():
    scalar_funs = [
        lambda x: np.sum(x ** 3),
        lambda x: np.prod(np.sin(x) + np.sin(x)),
        lambda x: grad(lambda y: np.exp(y) * np.tanh(x[0]))(x[1]),
    ]

    vector_fun = lambda x: np.array([f(x) for f in scalar_funs])

    x = npr.randn(5)
    jac = jacobian(vector_fun)(x)
    grads = [grad(f)(x) for f in scalar_funs]

    assert np.allclose(jac, np.vstack(grads))
Exemple #27
0
def test_info_to_mean_grad():
    npr.seed(0)
    n = 3

    g_mu = npr.randn(n)
    g_Sigma = npr.randn(3, 3)

    J = rand_psd(n)
    h = npr.randn(n)

    def info_to_mean((J, h)):
        Sigma = np.linalg.inv(J)
        mu = np.dot(Sigma, h)
        return mu, Sigma

    def fun1((J, h)):
        mu, Sigma = info_to_mean((J, h))
        return np.sum(g_mu * mu) + np.sum(g_Sigma * Sigma)

    g_J_1, g_h_1 = grad(fun1)((J, h))
    g_J_2, g_h_2 = info_to_mean_grad(g_mu, g_Sigma, J, h)

    assert np.allclose(g_h_1, g_h_2)
    assert np.allclose(g_J_1, g_J_2)
Exemple #28
0
def test_fast_conv():
    """ compares my fast_conv to scipy convolve """
    skip = 1
    block_size = (11, 11)
    depth = 5
    img   = np.random.randn(51, 51, depth)
    filt  = np.dstack([cv.gauss_filt_2D(shape=block_size,sigma=2) for k in range(depth)])

    # im2col the image and filter
    out = fc.convolve(filt, img)

    # check against scipy convolve
    outc = np.dstack([ auto_convolve(img[:,:,k], filt[:,:,k], mode='valid') for k in range(3)])
    outc = np.sum(outc, axis=2)
    assert np.allclose(out, outc), "fast_conv (cythonized) failed!"
Exemple #29
0
def test_im2col_convolve():
    """ compares my im2col based dot product convolve with scipy convolve """
    skip = 1
    block_size = (11, 11)
    img   = np.random.randn(227, 227, 3)
    filt  = np.dstack([cv.gauss_filt_2D(shape=block_size,sigma=2) for k in range(3)])

    # im2col the image and filter
    img_cols = cv.im2col(img, block_size=block_size, skip=skip)
    out      = cv.convolve_im2col(img_cols, filt, block_size, skip, img.shape)

    # check against scipy convolve
    outc = np.dstack([ sconvolve(img[:,:,k], filt[:,:,k], mode='valid') for k in range(3)])
    outc = np.sum(outc, axis=2)
    assert np.allclose(out, outc), "im2col skip 1 failed!"
Exemple #30
0
def check_equivalent(A, B, rtol=RTOL, atol=ATOL):
    assert base_class(type(A)) is base_class(type(B)),\
        "Types are: {0} and {1}".format(type(A), type(B))
    if isinstance(A, (tuple, list)):
        for a, b in zip(A, B): check_equivalent(a, b)
    elif isinstance(A, dict):
        assert len(A) == len(B)
        for k in A: check_equivalent(A[k], B[k])
    else:
        if isinstance(A, np.ndarray):
            assert A.shape == B.shape, "Shapes are analytic: {0} and numeric: {1}".format(
                A.shape, B.shape)
            assert A.dtype == B.dtype, "Types are  analytic: {0} and numeric: {1}".format(
                A.dtype, B.dtype)

        assert np.allclose(A, B, rtol=rtol, atol=atol), \
            "Diffs are:\n{0}.\nanalytic is:\n{A}.\nnumeric is:\n{B}.".format(A - B, A=A, B=B)
Exemple #31
0
def fit_linear_regression(Xs,
                          ys,
                          weights=None,
                          mu0=0,
                          sigmasq0=1,
                          nu0=1,
                          Psi0=1,
                          fit_intercept=True):
    """
    Fit a linear regression y_i ~ N(Wx_i + b, diag(S)) for W, b, S.

    :param Xs: array or list of arrays
    :param ys: array or list of arrays
    :param fit_intercept:  if False drop b
    """
    Xs = Xs if isinstance(Xs, (list, tuple)) else [Xs]
    ys = ys if isinstance(ys, (list, tuple)) else [ys]
    assert len(Xs) == len(ys)

    D = Xs[0].shape[1]
    P = ys[0].shape[1]
    assert all([X.shape[1] == D for X in Xs])
    assert all([y.shape[1] == P for y in ys])
    assert all([X.shape[0] == y.shape[0] for X, y in zip(Xs, ys)])

    mu0 = mu0 * np.zeros((P, D))
    sigmasq0 = sigmasq0 * np.eye(D)

    # Make sure the weights are the weights
    if weights is not None:
        weights = weights if isinstance(weights, (list, tuple)) else [weights]
    else:
        weights = [np.ones(X.shape[0]) for X in Xs]

    # Add weak prior on intercept
    if fit_intercept:
        mu0 = np.column_stack((mu0, np.zeros(P)))
        sigmasq0 = block_diag(sigmasq0, np.eye(1))

    # Compute the posterior
    J = np.linalg.inv(sigmasq0)
    h = np.dot(J, mu0.T)

    for X, y, weight in zip(Xs, ys, weights):
        X = np.column_stack((X, np.ones(X.shape[0]))) if fit_intercept else X
        J += np.dot(X.T * weight, X)
        h += np.dot(X.T * weight, y)

    # Solve for the MAP estimate
    W = np.linalg.solve(J, h).T
    if fit_intercept:
        W, b = W[:, :-1], W[:, -1]
    else:
        b = 0

    # Compute the residual and the posterior variance
    nu = nu0
    Psi = Psi0 * np.eye(P)
    for X, y, weight in zip(Xs, ys, weights):
        yhat = np.dot(X, W.T) + b
        resid = y - yhat
        nu += np.sum(weight)
        tmp1 = np.einsum('t,ti,tj->ij', weight, resid, resid)
        tmp2 = np.sum(weight[:, None, None] * resid[:, :, None] *
                      resid[:, None, :],
                      axis=0)
        assert np.allclose(tmp1, tmp2)
        Psi += tmp1

    # Get MAP estimate of posterior covariance
    Sigma = Psi / (nu + P + 1)
    if fit_intercept:
        return W, b, Sigma
    else:
        return W, Sigma
def test_csr_binary_dot_right():
    dotright_cython = csr_binary_dot_right(feats, rows, cols)
    dotright_numpy = np.dot(feats, binmat)

    assert np.allclose(dotright_cython, dotright_numpy)
    def run( self ):
        initial_dist, transition_dists, emission_dist = self.generateDists()
        graphs = self.graphs

        msg = self.msg
        msg.updateParams( initial_dist, transition_dists, emission_dist, graphs )
        msg.draw()
        U, V = msg.filter()
        assert 0
        # for node, elt in enumerate( U ):
        #     node = msg.partialGraphIndexToFullGraphIndex( node )
        #     print( 'node', node, 'elt.shape', elt.shape, 'elt.fbs_axis', elt.fbs_axis )

        # for node, edge, elt in zip( *V ):
        #     node = msg.partialGraphIndexToFullGraphIndex( node )
        #     print( 'node', node, 'edge', edge, 'elt.shape', elt.shape, 'elt.fbs_axis', elt.fbs_axis )
        # assert 0

        ####################################################

        print( '\nJoint' )
        for n, probs in msg.nodeJoint( U, V, msg.nodes ):
            reduced = msg.integrate( probs, axes=range( probs.ndim ) )
            print( 'P( x_%d, Y )'%( n ), ':', probs, '->', reduced )

        ####################################################

        print( '\nJoint parents should marginalize out to joint probs' )
        for n, probs in msg.jointParents( U, V, msg.nodes ):
            parents, parent_order = msg.getParents( n, get_order=True )
            joints = msg.nodeJoint( U, V, parents )
            for i, ( ( p, j ), o ) in enumerate( zip( joints, parent_order ) ):
                # Marginalize out the other parents from probs
                int_axes = np.setdiff1d( parent_order, o )
                reduced = msg.integrate( probs, axes=int_axes )
                print( 'sum_{ parents except %d }P( x_p1..pN, Y ) for node %d - P( x_%d, Y ) : ->'%( p, n, p ), ( j - reduced ).sum() )
                assert np.allclose( reduced, j ), 'reduced: %s, j: %s'%( reduced, j )

        ####################################################

        print( '\nJoint parent child should marginalize out to joint probs' )
        for n, probs in msg.jointParentChild( U, V, msg.nodes ):
            parents, parent_order = msg.getParents( n, get_order=True )
            n_parents = parents.shape[ 0 ]

            joints = msg.nodeJoint( U, V, parents )
            for i, ( ( p, j ), o ) in enumerate( zip( joints, parent_order ) ):
                # Marginalize out the other parents from probs
                int_axes = np.setdiff1d( np.hstack( ( n_parents, parent_order ) ), o )
                reduced = msg.integrate( probs, axes=int_axes )
                print( 'sum_{ parents except %d }P( x_%d, x_p1..pN, Y ) for node %d - P( x_%d, Y ) : ->'%( p, p, n, p ), ( j - reduced ).sum() )
                assert np.allclose( reduced, j ), 'reduced: %s, j: %s'%( reduced, j )

            ( _, joint ), = msg.nodeJoint( U, V, [ n ] )
            # Marginalize out all of the parents
            reduced = msg.integrate( probs, axes=parent_order )
            print( 'sum_{ parents }P( x_%d, x_p1..pN, Y ) - P( x_%d, Y ) : ->'%( n, n ), ( joint - reduced ).sum() )
            assert np.allclose( reduced, joint ), 'reduced: %s, j: %s'%( reduced, j )

        ####################################################

        print( '\nSmoothed' )
        for n, probs in msg.nodeSmoothed( U, V, msg.nodes ):
            # If we reduce over the last axis, we should have everything sum to 1
            reduced = msg.integrate( probs, axes=[ -1 ] )
            print( 'P( x_%d | Y )'%( n ), ':', probs, '->', probs.shape, reduced )
            assert np.allclose( reduced, 0.0 ), 'Failed test!'

        ####################################################

        print( '\nChild given parents' )
        for n, probs in msg.conditionalParentChild( U, V, msg.nodes ):
            # If we reduce over the last axis, we should have everything sum to 1
            reduced = msg.integrate( probs, axes=[ -1 ] )
            print( 'P( x_%d | x_p1..pN, Y )'%( n ), '->', probs.shape, reduced )
            assert np.allclose( reduced, 0.0 ), 'Failed test!'
Exemple #34
0
def testSwitchingKalmanFilter():

    T = 100
    D_latent = 20
    D_obs = 7
    D = 4
    K = 5

    mp = SwitchingKalmanFilter()

    As, sigmas = list(
        zip(*[
            MatrixNormalInverseWishart.generate(D_in=D_latent, D_out=D_latent)
            for _ in range(K)
        ]))
    C, R = MatrixNormalInverseWishart.generate(D_in=D_latent, D_out=D_obs)
    mu0, sigma0 = NormalInverseWishart.generate(D=D_latent)

    z = Categorical.generate(D=K, size=T)
    u = np.random.random((T, D_latent))
    ys = np.array(
        [Regression.sample(params=(C, R), size=T)[1] for _ in range(D)])

    start = time.time()
    mp.updateParams(z, As, sigmas, C, R, mu0, sigma0, u, ys)
    end = time.time()
    print('Preprocess: ', end - start)

    start = time.time()
    alphas = mp.forwardFilter()
    betas = mp.backwardFilter()
    end = time.time()
    print('Both filters: ', end - start)

    Ja, ha, log_Za = alphas[-1]
    Jb, hb, log_Zb = betas[-1]

    marginal = Normal.log_partition(nat_params=(-0.5 * Ja, ha)) - log_Za

    for a, b in zip(alphas, betas):
        Ja, ha, log_Za = a
        Jb, hb, log_Zb = b

        # comp = Normal.log_partition( nat_params=( -0.5*( Ja + Jb ), ( ha + hb ) ) ) - ( log_Za + log_Zb )
        comp = mp.log_marginalFromAlphaBeta(a, b)

        assert np.isclose(comp, marginal), comp - marginal

    for t in range(T - 1):

        joint = mp.childParentJoint(t, alphas, betas)

        _JsParent, _hsParent, _logZsParent = Normal.marginalizeX1(*joint)
        _JsChild, _hsChild, _logZsChild = Normal.marginalizeX2(*joint)

        JsParent, hsParent, logZsParent = np.add(alphas[t], betas[t])
        JsChild, hsChild, logZsChild = np.add(alphas[t + 1], betas[t + 1])

        assert np.allclose(_JsParent, JsParent)
        assert np.allclose(_hsParent, hsParent)
        assert np.allclose(_logZsParent, logZsParent)

        assert np.allclose(_JsChild, JsChild)
        assert np.allclose(_hsChild, hsChild)
        assert np.allclose(_logZsChild, logZsChild)

    print('Passed the switching kalman filter marginal test!\n\n')
  def testMixtureOfGaussians(self):
    def log_joint(x, pi, z, mu, sigma_sq, alpha, sigma_sq_mu):
      log_p_pi = log_probs.dirichlet_gen_log_prob(pi, alpha)
      log_p_mu = log_probs.norm_gen_log_prob(mu, 0, np.sqrt(sigma_sq_mu))

      z_one_hot = one_hot(z, len(pi))
      log_p_z = np.einsum('ij,j->', z_one_hot, np.log(pi))

      mu_z = np.einsum('ij,jk->ik', z_one_hot, mu)
      log_p_x = log_probs.norm_gen_log_prob(x, mu_z, np.sqrt(sigma_sq))

      return log_p_pi + log_p_z + log_p_mu + log_p_x

    n_clusters = 5
    n_dimensions = 2
    n_observations = 200

    alpha = 3.3 * np.ones(n_clusters)
    sigma_sq_mu = 1.5 ** 2
    sigma_sq = 0.5 ** 2

    np.random.seed(10001)

    pi = np.random.gamma(alpha)
    pi /= pi.sum()
    mu = np.random.normal(0, np.sqrt(sigma_sq_mu), [n_clusters, n_dimensions])
    z = np.random.choice(np.arange(n_clusters), size=n_observations, p=pi)
    x = np.random.normal(mu[z, :], sigma_sq)

    pi_est = np.ones(n_clusters) / n_clusters
    z_est = np.random.choice(np.arange(n_clusters), size=n_observations,
                             p=pi_est)
    mu_est = np.random.normal(0., 0.01, [n_clusters, n_dimensions])

    all_args = [x, pi_est, z_est, mu_est, sigma_sq, alpha, sigma_sq_mu]
    pi_posterior_args = all_args[:1] + all_args[2:]
    z_posterior_args = all_args[:2] + all_args[3:]
    mu_posterior_args = all_args[:3] + all_args[4:]

    pi_posterior = complete_conditional(log_joint, 1, SupportTypes.SIMPLEX,
                                        *all_args)
    z_posterior = complete_conditional(log_joint, 2, SupportTypes.INTEGER,
                                       *all_args)
    mu_posterior = complete_conditional(log_joint, 3, SupportTypes.REAL,
                                        *all_args)

    self.assertTrue(np.allclose(
        pi_posterior(*pi_posterior_args).alpha,
        alpha + np.histogram(z_est, np.arange(n_clusters+1))[0]))

    correct_z_logits = -0.5 / sigma_sq * np.square(x[:, :, None] -
                                                   mu_est.T[None, :, :]).sum(1)
    correct_z_logits += np.log(pi_est)
    correct_z_posterior = np.exp(correct_z_logits -
                                 misc.logsumexp(correct_z_logits, 1,
                                                keepdims=True))
    self.assertTrue(np.allclose(correct_z_posterior,
                                z_posterior(*z_posterior_args).p))

    correct_mu_posterior_mean = np.zeros_like(mu_est)
    correct_mu_posterior_var = np.zeros_like(mu_est)
    for k in range(n_clusters):
      n_k = (z_est == k).sum()
      correct_mu_posterior_var[k] = 1. / (1. / sigma_sq_mu + n_k / sigma_sq)
      correct_mu_posterior_mean[k] = (
          x[z_est == k].sum(0) / sigma_sq * correct_mu_posterior_var[k])
    mu_posterior_val = mu_posterior(*mu_posterior_args)
    self.assertTrue(np.allclose(correct_mu_posterior_mean,
                                mu_posterior_val.args[0]))
    self.assertTrue(np.allclose(correct_mu_posterior_var,
                                mu_posterior_val.args[1] ** 2))
Exemple #36
0
    #   - d indexes D dimension (obs dimension)
    inv_term = np.linalg.solve(r_term, np.swapaxes(aC, 1, 2))
    back_term = np.einsum('idr,id->ir', aC, p)  # (Ct A^{-1} p)
    Sigvs = inv_v * p - np.einsum('ird,ir->id', inv_term, back_term)
    return Sigvs


if __name__ == "__main__":

    # Test woodbury
    C = np.random.randn(10, 3)
    v = np.random.randn(10) * 2
    Sigma = np.dot(C, C.T) + np.diag(np.exp(v))
    Sinv = np.linalg.inv(Sigma)
    Sinv_wood = woodbury_invert(C, v)
    assert np.allclose(Sinv, Sinv_wood, atol=1e-6), "woodbury!"

    _, lndet = np.linalg.slogdet(Sigma)
    lndet_wood = woodbury_lndet(C, v)
    assert np.allclose(lndet, lndet_wood), "woodbury det!"

    # test woodbury solve
    p = np.random.randn(10)
    a_wood = woodbury_solve(C, v, p)
    a = np.dot(Sinv, p)
    assert np.allclose(a, a_wood), "woodbury solve!"

    p = np.random.randn(10, 23)
    aw = woodbury_solve(C, v, p)
    aa = np.dot(Sinv, p)
    assert np.allclose(aw, aa), "woodbury solve vectorized!"
Exemple #37
0
def fit_linear_regression(Xs, ys,
                          weights=None,
                          fit_intercept=True,
                          prior_mean=0,
                          prior_variance=1,
                          nu0=1,
                          Psi0=1
                          ):
    """
    Fit a linear regression y_i ~ N(Wx_i + b, diag(S)) for W, b, S.

    :param Xs: array or list of arrays
    :param ys: array or list of arrays
    :param fit_intercept:  if False drop b
    """
    Xs = Xs if isinstance(Xs, (list, tuple)) else [Xs]
    ys = ys if isinstance(ys, (list, tuple)) else [ys]
    assert len(Xs) == len(ys)

    p, d = Xs[0].shape[1], ys[0].shape[1]
    assert all([X.shape[1] == p for X in Xs])
    assert all([y.shape[1] == d for y in ys])
    assert all([X.shape[0] == y.shape[0] for X, y in zip(Xs, ys)])

    prior_mean = prior_mean * np.zeros((d, p))
    prior_variance = prior_variance * np.eye(p)

    # Check the weights.  Default to all ones.
    if weights is not None:
        weights = weights if isinstance(weights, (list, tuple)) else [weights]
    else:
        weights = [np.ones(X.shape[0]) for X in Xs]

    # Add weak prior on intercept
    if fit_intercept:
        prior_mean = np.column_stack((prior_mean, np.zeros(d)))
        prior_variance = block_diag(prior_variance, np.eye(1))

    # Compute the posterior
    J = np.linalg.inv(prior_variance)
    h = np.dot(J, prior_mean.T)

    for X, y, weight in zip(Xs, ys, weights):
        X = np.column_stack((X, np.ones(X.shape[0]))) if fit_intercept else X
        J += np.dot(X.T * weight, X)
        h += np.dot(X.T * weight, y)

    # Solve for the MAP estimate
    W = np.linalg.solve(J, h).T
    if fit_intercept:
        W, b = W[:, :-1], W[:, -1]
    else:
        b = 0

    # Compute the residual and the posterior variance
    nu = nu0
    Psi = Psi0 * np.eye(d)
    for X, y, weight in zip(Xs, ys, weights):
        yhat = np.dot(X, W.T) + b
        resid = y - yhat
        nu += np.sum(weight)
        tmp1 = np.einsum('t,ti,tj->ij', weight, resid, resid)
        tmp2 = np.sum(weight[:, None, None] * resid[:, :, None] * resid[:, None, :], axis=0)
        assert np.allclose(tmp1, tmp2)
        Psi += tmp1

    # Get MAP estimate of posterior covariance
    Sigma = Psi / (nu + d + 1)
    if fit_intercept:
        return W, b, Sigma
    else:
        return W, Sigma
Exemple #38
0
 def test_vmc_single_point(self):
     vmc = VMC(wf=self.wf, sampler=self.sampler, optimizer=None)
     opt_param = [0.5]
     _, e, s = vmc.single_point(opt_param)
     assert np.allclose([e, s], [0.5, 0], atol=1E-3)
Exemple #39
0
 def test_vmc_opt(self):
     vmc = VMC(wf=self.wf, sampler=self.sampler, optimizer=self.optimizer)
     init_param = [1.25]
     vmc.optimize(init_param)
     vf = vmc.history['variance'][-1]
     assert np.allclose([vf], [0.0], atol=1E-3)
Exemple #40
0
 def check_expectedstats(natparam):
     E_stats1 = expectedstats(natparam)
     E_stats2 = grad(logZ)(natparam)
     assert np.allclose(E_stats1, E_stats2)
Exemple #41
0
__gtilde_subsample = 1

__gtilde_pickle_fn = 'VBHP/gtilde.pkl'
__gtilde_csv_fn = 'VBHP/gtilde.csv'

_gtilde_table = wh.load(__gtilde_pickle_fn)

isub = list(range(0, _gtilde_table.shape[1]-1, __gtilde_subsample)) + [_gtilde_table.shape[1]-1]
_gtilde_table = _gtilde_table[:,isub]
_gtilde_neglogz, _gtilde_value, _grad_gtilde_value =_gtilde_table
assert not np.isinf(min(_gtilde_neglogz))
_gtilde_neglogz_0, _gtilde_value_0, _grad_gtilde_value_0 = -np.inf, 0.0, 2
_gtilde_neglogz_range = (min(_gtilde_neglogz),max(_gtilde_neglogz))
imin = np.argmin(_gtilde_neglogz)
assert imin == 0
assert np.allclose(_gtilde_value_0, _gtilde_value[imin])
assert np.allclose(_grad_gtilde_value_0, _grad_gtilde_value[imin])
_gtilde_interp = scipy.interpolate.interp1d(_gtilde_neglogz, _gtilde_value, fill_value=(_gtilde_value_0, np.nan), bounds_error=False, kind=__interp1d_kind)
_grad_gtilde_interp = scipy.interpolate.interp1d(_gtilde_neglogz, _grad_gtilde_value, fill_value=(_grad_gtilde_value_0, np.nan), bounds_error=False, kind=__interp1d_kind)



def gtilde(z):
    """get the value of gtilde at -z by intersection"""
    assert isinstance(z, np.ndarray)
    assert np.all(z <= 0.0)
    lognegz = np.log(-z)
    assert np.all(lognegz <= _gtilde_neglogz_range[1]), (min(lognegz), max(lognegz), _gtilde_neglogz_range)
    rval = _gtilde_interp(lognegz)
    rval[z==0] = _gtilde_value_0
    rval[lognegz < _gtilde_neglogz[0]] = 0.0
Exemple #42
0
 def check_params(natparam):
     natparam2 = pack_dense(*unpack_dense(natparam))
     assert np.allclose(natparam, natparam2)
Exemple #43
0
def test_grad_identity():
    fun = lambda x: x
    df = grad(fun)
    ddf = grad(df)
    assert np.allclose(df(2.0), 1.0)
    assert np.allclose(ddf(2.0), 0.0)
Exemple #44
0
def test_grad_const():
    fun = lambda x: 1.0
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("ignore")
        df = grad(fun)
        assert np.allclose(df(2.0), 0.0)
Exemple #45
0
 def test_rand(self):
     x = self.man.rand()
     p = np.ones(2) / np.sqrt(2)
     # The manifold only consists of two isolated points (cf. `setUp()`).
     self.assertTrue(np.allclose(x, p) or np.allclose(x, -p))
Exemple #46
0
def allclose(m1, m2):
    if isinstance(m1, np.ndarray):
        return np.allclose(m1, m2)
    elif np.isscalar(m1):
        return np.isclose(m1, m2)
    return len(m1) == len(m2) and all(map(allclose, m1, m2))
Exemple #47
0
 def assert_allclose(self, x, y, tol=1e-12, msg=''):
     self.assertTrue(
         np.allclose(x, y, tol),
         msg='{}\nx !~ y where\nx = {}\ny = {}\ntol = {}'.format(
             msg, x, y, tol))
Exemple #48
0
 def run_hessian_approximation_test(self):
     problem = pymanopt.Problem(self.manifold, self.cost)
     _, error, _, (slope, *_) = diagnostics.check_directional_derivative(
         problem, use_quadratic_model=True
     )
     assert np.allclose(np.linalg.norm(error), 0) or (2.95 <= slope <= 3.05)
 def fun(x):
     assert np.allclose(x, (x * 3.0) / 3.0)
     return np.sum(x)
Exemple #50
0
def test_SLDSStructuredMeanField_entropy():
    """Test correctness of the entropy calculation for the
    SLDSStructuredMeanFieldVariationalPosterior class.

    """
    def entropy_mv_gaussian(J, h):
        mu = np.linalg.solve(J, h)
        sigma = np.linalg.inv(J)
        mv_normal = scipy.stats.multivariate_normal(mu, sigma)
        return mv_normal.entropy()

    def make_lds_parameters(T, D, N, U):
        m0 = np.zeros(D)
        S0 = np.eye(D)
        As = 0.99 * np.eye(D)
        Bs = np.zeros((D, U))
        Qs = 0.1 * np.eye(D)
        Cs = npr.randn(N, D)
        Ds = np.zeros((N, U))
        Rs = 0.1 * np.eye(N)
        us = np.zeros((T, U))
        ys = np.sin(2 * np.pi * np.arange(T) / 50)[:, None] * npr.randn(1, N) + 0.1 * npr.randn(T, N)

        return m0, S0, As, Bs, Qs, Cs, Ds, Rs, us, ys

    def cumsum(v,strict=False):
        if not strict:
            return np.cumsum(v,axis=0)
        else:
            out = np.zeros_like(v)
            out[1:] = np.cumsum(v[:-1],axis=0)
            return out

    def bmat(blocks):
        rowsizes = [row[0].shape[0] for row in blocks]
        colsizes = [col[0].shape[1] for col in zip(*blocks)]
        rowstarts = cumsum(rowsizes,strict=True)
        colstarts = cumsum(colsizes,strict=True)

        nrows, ncols = sum(rowsizes), sum(colsizes)
        out = np.zeros((nrows,ncols))

        for i, (rstart, rsz) in enumerate(zip(rowstarts, rowsizes)):
            for j, (cstart, csz) in enumerate(zip(colstarts, colsizes)):
                out[rstart:rstart+rsz,cstart:cstart+csz] = blocks[i][j]
        return out

    def lds_to_dense_infoparams(params):
        m0, S0, As, Bs, Qs, Cs, Ds, Rs, us, ys = params
        mu_init = m0
        sigma_init = S0
        A, B, sigma_states = As, Bs, Qs
        C, D, sigma_obs = Cs, Ds, Rs
        data = ys
        inputs = us

        # Copied from PYLDS tests/test_dense.py
        T, n = data.shape[0], D.shape[0]

        # mu_init, sigma_init = model.mu_init, model.sigma_init
        # A, B, sigma_states = model.A, model.B,  model.sigma_states
        # C, D, sigma_obs = model.C, model.D, model.sigma_obs
        ss_inv = np.linalg.inv(sigma_states)

        h = np.zeros((T,n))
        h[0] += np.linalg.solve(sigma_init, mu_init)

        # Dynamics
        h[1:] += inputs[:-1].dot(B.T).dot(ss_inv)
        h[:-1] += -inputs[:-1].dot(B.T).dot(np.linalg.solve(sigma_states, A))

        # Emissions
        h += C.T.dot(np.linalg.solve(sigma_obs, data.T)).T
        h += -inputs.dot(D.T).dot(np.linalg.solve(sigma_obs, C))

        J = np.kron(np.eye(T),C.T.dot(np.linalg.solve(sigma_obs,C)))
        J[:n,:n] += np.linalg.inv(sigma_init)
        pairblock = bmat([[A.T.dot(ss_inv).dot(A), -A.T.dot(ss_inv)],
                        [-ss_inv.dot(A), ss_inv]])
        for t in range(0,n*(T-1),n):
            J[t:t+2*n,t:t+2*n] += pairblock

        return J.reshape(T*n,T*n), h.reshape(T*n)

    T, D, N, U = 100, 10, 10, 0
    params = make_lds_parameters(T, D, N, U)
    J_full, h_full = lds_to_dense_infoparams(params)

    ref_entropy = entropy_mv_gaussian(J_full, h_full)

    # Calculate entropy using kalman filter and posterior's entropy fn
    info_args = ssm.messages.convert_mean_to_info_args(*params)
    J_ini, h_ini, _, J_dyn_11,\
        J_dyn_21, J_dyn_22, h_dyn_1,\
        h_dyn_2, _, J_obs, h_obs, _ = info_args

    # J_obs[1:] += J_dyn_22
    # J_dyn_22[:] = 0
    log_Z, smoothed_mus, smoothed_Sigmas, ExxnT = ssm.messages.\
        kalman_info_smoother(*info_args)


    # Model is just a dummy model to simplify 
    # instantiating the posterior object.
    model = ssm.SLDS(N, 1, D, emissions="gaussian", dynamics="gaussian")
    datas = params[-1]
    post = ssm.variational.SLDSStructuredMeanFieldVariationalPosterior(model, datas)

    # Assign posterior to have info params that are the same as the ones used
    # in the reference entropy calculation.
    continuous_state_params = [dict(J_ini=J_ini,
                                    J_dyn_11=J_dyn_11,
                                    J_dyn_21=J_dyn_21,
                                    J_dyn_22=J_dyn_22,
                                    J_obs=J_obs,
                                    h_ini=h_ini,
                                    h_dyn_1=h_dyn_1,
                                    h_dyn_2=h_dyn_2,
                                    h_obs=h_obs)]
    post.continuous_state_params = continuous_state_params

    ssm_entropy = post._continuous_entropy()
    print("reference entropy: {}".format(ref_entropy))
    print("ssm_entropy: {}".format(ssm_entropy))
    assert np.allclose(ref_entropy, ssm_entropy)
Exemple #51
0
def testStableKalmanFilter():

    # np.random.seed( 3 )

    with np.errstate(all='raise'), scipy.special.errstate(all='raise'):
        T = 1000
        D_latent = 7
        D_obs = 3
        D = 4

        mp = StableKalmanFilter()
        mpTrue = KalmanFilter()

        A, sigma = MatrixNormalInverseWishart.generate(D_in=D_latent,
                                                       D_out=D_latent)
        C, R = MatrixNormalInverseWishart.generate(D_in=D_latent, D_out=D_obs)
        mu0, sigma0 = NormalInverseWishart.generate(D=D_latent)

        u = np.random.random((T, D_latent))

        ys = np.array(
            [Regression.sample(params=(C, R), size=T)[1] for _ in range(D)])

        mpTrue.updateParams(A=A,
                            sigma=sigma,
                            C=C,
                            R=R,
                            mu0=mu0,
                            sigma0=sigma0,
                            u=u,
                            ys=ys)

        start = time.time()
        mp.updateParams(A=A,
                        sigma=sigma,
                        C=C,
                        R=R,
                        mu0=mu0,
                        sigma0=sigma0,
                        u=u,
                        ys=ys)
        end = time.time()
        print('Preprocess: ', end - start)

        start = time.time()
        alphas = mp.forwardFilter()
        betas = mp.backwardFilter()
        end = time.time()
        print('Both filters: ', end - start)

        alphasTrue, betasTrue = (mpTrue.forwardFilter(),
                                 mpTrue.backwardFilter())

        # for i, ( a, b ) in enumerate( zip( alphas, betas ) ):
        #     Ja, ha, log_Za = a
        #     if( i == 1 ):
        #         print( 'Ja', Ja )

        Ja, ha, log_Za = alphas[-1]
        Jb, hb, log_Zb = betas[-1]

        for i, (a, b, _a,
                _b) in enumerate(zip(alphas, betas, alphasTrue, betasTrue)):
            Ja, ha, log_Za = a
            Jb, hb, log_Zb = b

            _Ja, _ha, _log_Za = _a
            _Jb, _hb, _log_Zb = _b

            assert np.allclose(
                Ja, _Ja, rtol=1e-5,
                atol=1e-6), '%s\n%s' % ((Ja - _Ja), np.max((Ja - _Ja)))
            assert np.allclose(
                Jb, _Jb, rtol=1e-5,
                atol=1e-6), '%s\n%s' % ((Jb - _Jb), np.max((Jb - _Jb)))
            assert np.allclose(
                ha, _ha, rtol=1e-5,
                atol=1e-6), '%s\n%s' % ((ha - _ha), np.max((ha - _ha)))
            assert np.allclose(
                hb, _hb, rtol=1e-5,
                atol=1e-6), '%s\n%s' % ((hb - _hb), np.max((hb - _hb)))
            assert np.allclose(
                log_Za, _log_Za, rtol=1e-5, atol=1e-6), '%s\n%s' % (
                    (log_Za - _log_Za), np.max((log_Za - _log_Za)))
            assert np.allclose(
                log_Zb, _log_Zb, rtol=1e-5, atol=1e-6), '%s\n%s' % (
                    (log_Zb - _log_Zb), np.max((log_Zb - _log_Zb)))

        print('Passed the stable kalman filter marginal test!\n\n')
Exemple #52
0
def check_ggnvp(f, x, v):
  gnvp = make_ggnvp(f)(x)
  gnvp2 = make_dense_ggnvp(f)(x)
  return np.allclose(gnvp(v), gnvp2(v))
Exemple #53
0
def testKalmanFilter():

    T = 1000
    D_latent = 7
    D_obs = 3
    D = 4

    mp = KalmanFilter()

    A, sigma = MatrixNormalInverseWishart.generate(D_in=D_latent,
                                                   D_out=D_latent)
    C, R = MatrixNormalInverseWishart.generate(D_in=D_latent, D_out=D_obs)
    mu0, sigma0 = NormalInverseWishart.generate(D=D_latent)

    u = np.random.random((T, D_latent))
    # nBad = int( np.random.random() * T )
    # badMask = np.random.choice( T, nBad )
    # u[ badMask ] = np.nan

    ys = np.array(
        [Regression.sample(params=(C, R), size=T)[1] for _ in range(D)])

    start = time.time()
    mp.updateParams(A=A,
                    sigma=sigma,
                    C=C,
                    R=R,
                    mu0=mu0,
                    sigma0=sigma0,
                    u=u,
                    ys=ys)
    end = time.time()
    print('Preprocess: ', end - start)

    start = time.time()
    alphas = mp.forwardFilter()
    betas = mp.backwardFilter()
    end = time.time()
    print('Both filters: ', end - start)

    Ja, ha, log_Za = alphas[-1]
    Jb, hb, log_Zb = betas[-1]

    marginal = Normal.log_partition(nat_params=(-0.5 * Ja, ha)) - log_Za

    for a, b in zip(alphas, betas):
        Ja, ha, log_Za = a
        Jb, hb, log_Zb = b

        # _marginal = Normal.log_partition( nat_params=( -0.5*( Ja + Jb ), ( ha + hb ) ) ) - ( log_Za + log_Zb )
        _marginal = mp.log_marginalFromAlphaBeta(a, b)

        assert np.isclose(_marginal, marginal), _marginal - marginal

    for t in range(T - 1):

        joint = mp.childParentJoint(t, alphas, betas)

        _JsParent, _hsParent, _logZsParent = Normal.marginalizeX1(*joint)
        _JsChild, _hsChild, _logZsChild = Normal.marginalizeX2(*joint)

        JsParent, hsParent, logZsParent = np.add(alphas[t], betas[t])
        JsChild, hsChild, logZsChild = np.add(alphas[t + 1], betas[t + 1])

        assert np.allclose(_JsParent, JsParent)
        assert np.allclose(_hsParent, hsParent)
        assert np.allclose(_logZsParent, logZsParent)

        assert np.allclose(_JsChild, JsChild)
        assert np.allclose(_hsChild, hsChild)
        assert np.allclose(_logZsChild, logZsChild)

    print('Passed the kalman filter marginal test!\n\n')
Exemple #54
0
def test_forward_pass(T=1000, K=3):
    log_pi0, log_Ps, ll = make_parameters(T, K)
    a1 = forward_pass_np(log_pi0, log_Ps, ll)
    a2 = np.zeros((T, K))
    forward_pass(-np.log(K) * np.ones(K), log_Ps, ll, a2)
    assert np.allclose(a1, a2)
  def testSplitEinsumNode2(self):
    n_dimensions = 5
    x = np.random.randn(n_dimensions)
    y = np.random.randn(n_dimensions)
    matrix = np.random.randn(n_dimensions, n_dimensions)

    env = {'x': x, 'y': y, 'matrix': matrix}

    args = (x, y)
    f = lambda x, y: np.einsum('i,i->', x, y)
    node = make_expr(f, *args)
    val = f(*args)
    potential_node, stat_node = split_einsum_node2(node.expr_node, [0])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env), x))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))
    potential_node, stat_node = split_einsum_node2(node.expr_node, [1])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env), y))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))
    potential_node, stat_node = split_einsum_node2(node.expr_node, [0, 1])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env), x * y))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))

    args = (x, y)
    f = lambda x, y: np.einsum('i,i,i->', x, y, y)
    node = make_expr(f, *args)
    val = f(*args)
    potential_node, stat_node = split_einsum_node2(node.expr_node, [1, 2])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env), y * y))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))
    potential_node, stat_node = split_einsum_node2(node.expr_node, [0])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env), x))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))

    args = (x,)
    f = lambda x: np.einsum('i,i,i->', np.ones_like(x), x, x)
    node = make_expr(f, *args)
    val = f(*args)
    potential_node, stat_node = split_einsum_node2(node.expr_node, [1, 2])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env), x * x))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))

    args = (matrix, x, y)
    f = lambda matrix, x, y: np.einsum('ij,i,j->', matrix, x, y)
    node = make_expr(f, *args)
    val = f(*args)
    potential_node, stat_node = split_einsum_node2(node.expr_node, [1, 2])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env),
                                np.outer(x, y)))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))
    potential_node, stat_node = split_einsum_node2(node.expr_node, [0])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env), matrix))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))

    args = (matrix, x, y)
    f = lambda matrix, x, y: np.einsum('i,j,ki,kj->', x, x, matrix, matrix)
    node = make_expr(f, *args)
    val = f(*args)
    potential_node, stat_node = split_einsum_node2(node.expr_node, [2, 3])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env),
                                matrix[:, None, :] * matrix[:, :, None]))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))
    potential_node, stat_node = split_einsum_node2(node.expr_node, [0, 1])
    self.assertTrue(np.allclose(eval_node(stat_node, node, env),
                                np.outer(x, x)))
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))

    args = (matrix, x, y)
    f = lambda matrix, x, y: np.einsum(',kj,j,ka,a->', -0.5, matrix, x,
                                       matrix, y)
    node = make_expr(f, *args)
    val = f(*args)
    potential_node, stat_node = split_einsum_node2(node.expr_node, [2, 4], False)
    self.assertEqual(stat_node.args[0], 'j,a->ja')
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))
    potential_node, stat_node = split_einsum_node2(node.expr_node, [0, 1, 3], False)
    self.assertEqual(stat_node.args[0], ',kj,ka->kja')
    self.assertTrue(np.allclose(eval_node(potential_node, node, env), val))
Exemple #56
0
def test_laplace_em_hessian(N=5, K=3, D=2, T=20):
    for transitions in ["standard", "recurrent", "recurrent_only"]:
        for emissions in ["gaussian_orthog", "gaussian"]:
            print("Checking analytical hessian for transitions={},  "
                  "and emissions={}".format(transitions, emissions))
            slds = ssm.SLDS(N,
                            K,
                            D,
                            transitions=transitions,
                            dynamics="gaussian",
                            emissions=emissions)
            z, x, y = slds.sample(T)
            new_slds = ssm.SLDS(N,
                                K,
                                D,
                                transitions="standard",
                                dynamics="gaussian",
                                emissions=emissions)

            inputs = [np.zeros((T, 0))]
            masks = [np.ones_like(y)]
            tags = [None]
            method = "laplace_em"
            datas = [y]
            num_samples = 1

            def neg_expected_log_joint_wrapper(x_vec, T, D):
                x = x_vec.reshape(T, D)
                return new_slds._laplace_neg_expected_log_joint(
                    datas[0], inputs[0], masks[0], tags[0], x, Ez, Ezzp1)

            variational_posterior = new_slds._make_variational_posterior(
                "structured_meanfield", datas, inputs, masks, tags, method)
            new_slds._fit_laplace_em_discrete_state_update(
                variational_posterior, datas, inputs, masks, tags, num_samples)
            Ez, Ezzp1, _ = variational_posterior.discrete_expectations[0]

            x = variational_posterior.mean_continuous_states[0]
            scale = x.size
            J_diag, J_lower_diag = new_slds._laplace_hessian_neg_expected_log_joint(
                datas[0], inputs[0], masks[0], tags[0], x, Ez, Ezzp1)
            dense_hessian = scipy.linalg.block_diag(*[x for x in J_diag])
            dense_hessian[D:, :-D] += scipy.linalg.block_diag(
                *[x for x in J_lower_diag])
            dense_hessian[:-D, D:] += scipy.linalg.block_diag(
                *[x.T for x in J_lower_diag])

            true_hess = hessian(neg_expected_log_joint_wrapper)(x.reshape(-1),
                                                                T, D)
            assert np.allclose(true_hess, dense_hessian)
            print("Hessian passed.")

            # Also check that computation of H works.
            h_dense = dense_hessian @ x.reshape(-1)
            h_dense = h_dense.reshape(T, D)

            J_ini, J_dyn_11, J_dyn_21, J_dyn_22, J_obs = new_slds._laplace_neg_hessian_params(
                datas[0], inputs[0], masks[0], tags[0], x, Ez, Ezzp1)
            h_ini, h_dyn_1, h_dyn_2, h_obs = new_slds._laplace_neg_hessian_params_to_hs(
                x, J_ini, J_dyn_11, J_dyn_21, J_dyn_22, J_obs)

            h = h_obs.copy()
            h[0] += h_ini
            h[:-1] += h_dyn_1
            h[1:] += h_dyn_2

            assert np.allclose(h, h_dense)
def test_csr_binary_dot_left():
    dotleft_cython = csr_binary_dot_left(feats, rows, cols)
    dotleft_numpy = np.dot(binmat, feats)

    assert np.allclose(dotleft_cython, dotleft_numpy)
Exemple #58
0
def test():

    torch.set_default_dtype(torch.float64)
    torch.manual_seed(42)

    # generate some test data
    T = 10
    qdim = 2

    q = torch.randn(5, T, qdim)

    qdot = torch.randn(5, T, qdim)
    qddot = torch.cat(
        (torch.zeros(5, 1, qdim), (qdot[:, 1:, :] - qdot[:, :-1, :]) / 0.1),
        dim=1)

    x_ = torch.cat([q, qdot], dim=-1)
    x = x_[:, :-1]
    nx = x_[:, 1:]

    sys = StructuredMechanicalModel(qdim=qdim, dt=0.1, hidden_sizes=[2])

    def _loss(qddot_true):
        qddot_pred = sys.compute_qddot(q, qdot, create_graph=True)
        return torch.nn.functional.mse_loss(qddot_true, qddot_pred)

    assert gradcheck(_loss, qddot.requires_grad_())

    print("Testing wrt theta")

    def _ploss(params):
        if params.ndim > 1:
            retval = np.zeros(len(params))
            for i in tqdm(range(len(params))):
                retval[i] = _ploss(params[i])
            return retval

        vtp(torch.tensor(params), sys.parameters())
        sys.zero_grad()
        qddot_pred = sys.compute_qddot(q, qdot, create_graph=True)
        return torch.nn.functional.mse_loss(qddot, qddot_pred).detach().numpy()

    params0 = ptv(sys.parameters()).detach()

    # gradient = grad(_ploss)(params0.numpy())
    gradient = nd.Gradient(_ploss)(params0.numpy())

    vtp(params0, sys.parameters())
    sys.zero_grad()

    qddot_pred = sys.compute_qddot(q, qdot, create_graph=True)

    loss = torch.nn.functional.mse_loss(qddot, qddot_pred)

    loss.backward()

    gradient_ = parameter_grads_to_vector(sys.parameters()).detach().numpy()

    print(gradient)

    print(gradient_)

    assert np.allclose(gradient_, gradient)

    print("Testing wrt theta")

    def _ploss(params):
        if params.ndim > 1:
            retval = np.zeros(len(params))
            for i in tqdm(range(len(params))):
                retval[i] = _ploss(params[i])
            return retval

        vtp(torch.tensor(params), sys.parameters())
        sys.zero_grad()
        nx_pred = sys.step(torch.ones(5, 9), x)
        return torch.nn.functional.mse_loss(nx_pred[..., qdim:],
                                            nx[..., qdim:]).detach().numpy()

    params0 = ptv(sys.parameters()).detach()

    # gradient = grad(_ploss)(params0.numpy())
    gradient = nd.Gradient(_ploss)(params0.numpy())

    vtp(params0, sys.parameters())
    sys.zero_grad()

    nx_pred = sys.step(torch.ones(5, 9), x)
    loss = torch.nn.functional.mse_loss(nx_pred[..., qdim:], nx[..., qdim:])

    loss.backward()

    gradient_ = parameter_grads_to_vector(sys.parameters()).detach().numpy()

    print(gradient)

    print(gradient_)

    assert np.allclose(gradient_, gradient)
Exemple #59
0
def fit_multiclass_logistic_regression(X,
                                       y,
                                       bias=None,
                                       K=None,
                                       W0=None,
                                       mu0=0,
                                       sigmasq0=1,
                                       verbose=False,
                                       maxiter=1000):
    """
    Fit a multiclass logistic regression

        y_i ~ Cat(softmax(W x_i))

    y is a one hot vector in {0, 1}^K
    x_i is a vector in R^D
    W is a matrix R^{K x D}

    The log likelihood is,

        L(W) = sum_i sum_k y_ik * w_k^T x_i - logsumexp(W x_i)

    The prior is w_k ~ Norm(mu0, diag(sigmasq0)).
    """
    N, D = X.shape
    assert y.shape[0] == N

    # Make sure y is one hot
    if y.ndim == 1 or y.shape[1] == 1:
        assert y.dtype == int and y.min() >= 0
        K = y.max() + 1 if K is None else K
        y_oh = np.zeros((N, K), dtype=int)
        y_oh[np.arange(N), y] = 1

    else:
        K = y.shape[1]
        assert y.min() == 0 and y.max() == 1 and np.allclose(y.sum(1), 1)
        y_oh = y

    # Check that bias is correct shape
    if bias is not None:
        assert bias.shape == (K, ) or bias.shape == (N, K)
    else:
        bias = np.zeros((K, ))

    def loss(W_flat):
        W = np.reshape(W_flat, (K, D))
        scores = np.dot(X, W.T) + bias
        lp = np.sum(y_oh * scores) - np.sum(logsumexp(scores, axis=1))
        prior = np.sum(-0.5 * (W - mu0)**2 / sigmasq0)
        return -(lp + prior) / N

    W0 = W0 if W0 is not None else np.zeros((K, D))
    assert W0.shape == (K, D)

    itr = [0]

    def callback(W_flat):
        itr[0] += 1
        print("Iteration {} loss: {:.3f}".format(itr[0], loss(W_flat)))

    result = minimize(loss,
                      np.ravel(W0),
                      jac=grad(loss),
                      method="BFGS",
                      callback=callback if verbose else None,
                      options=dict(maxiter=maxiter, disp=verbose))

    W = np.reshape(result.x, (K, D))
    return W
Exemple #60
0
def is_posdef(A):
    return np.allclose(A, A.T) and np.all(np.linalg.eigvalsh(A) > 0.)