Exemple #1
0
    def __init__(self,
                 m=4,
                 n=3,
                 initial_path='initial_airfoil/naca0012.dat',
                 config_fname='op_conditions.ini'):

        # Airfoil parameters
        self.m = m
        self.n = n

        # NACA 0012 as the initial airfoil
        try:
            self.airfoil0 = np.loadtxt(initial_path, skiprows=1)
        except:
            self.airfoil0 = np.loadtxt(initial_path, delimiter=',')
        x_min = np.min(self.airfoil0[:, 0])
        x_max = np.max(self.airfoil0[:, 0])
        z_min = np.min(self.airfoil0[:, 1])
        z_max = np.max(self.airfoil0[:, 1])
        Px = np.linspace(x_min, x_max, self.m, endpoint=True)
        Py = np.linspace(z_min, z_max, self.n, endpoint=True)
        x, y = np.meshgrid(Px, Py)
        P0 = np.stack((x, y), axis=-1)
        self.Px = P0[:, :, 0]
        self.alpha0 = P0[:, :, 1].flatten()

        self.dim = len(self.alpha0)
        self.bounds = np.zeros((self.dim, 2))
        perturb = 0.2
        self.bounds[:, 0] = self.alpha0 - perturb
        self.bounds[:, 1] = self.alpha0 + perturb

        self.y = None
        self.config_fname = config_fname
def import_ganZ_gen_params(gp_fold, iter_nm):
    n00 = np.loadtxt(gp_fold + iter_nm + '_00.csv', delimiter=',')
    n00 = n00.reshape(1, n00.shape[0])
    n01 = np.loadtxt(gp_fold + iter_nm + '_01.csv', delimiter=',')
    n10 = np.loadtxt(gp_fold + iter_nm + '_10.csv', delimiter=',')
    n10 = n10.reshape(n10.shape[0], 1)
    n11 = np.loadtxt(gp_fold + iter_nm + '_11.csv', delimiter=',')
    n11 = n11.reshape(1)
    genZ_params = [(n00, n01), (n10, n11)]
    return genZ_params
 def run(self):
     plt.imshow(self.data);
     plt.show();
     plt.imshow(self.psf);
     plt.show();
     #set up initial guesses
     #create initial parameters
     tt0 = np.zeros((self.n_grid,self.n_grid)) + self.wlim[1]; #begin with high uniform mass in each pixel
     tt0 = self.xi*np.log(np.exp(tt0/self.xi)-1);
     #print(tt0);
     tt0_k = fft.fft2(tt0); #take fft
     t_ini = self.complex_to_real(tt0_k.flatten()) #flatten to 1d for scipy and embed in 2R
     
     alpha_ini = 3.;
     f_ini = self.f_true;
     #m_1,mf =  self.optimize_m(t_ini,self.xi,f_ini,alpha_ini);
     m_1 = np.loadtxt('mock00024.out');
     m_1 = self.xi*np.log(np.exp(m_1/self.xi)-1);
     m_1 = fft.fft2(m_1);
     m_1 = self.complex_to_real(m_1.flatten());
     a_1 = self.optimize_alpha(m_1,self.xi,f_ini,alpha_ini);
     print(a_1);
     mf,m_2 = self.optimize_m(tt0,self.xi,f_ini,a_1);
     print('new alpha');
     print(a_1);
     return m_2;
     
     
 def __init__(self, csvname):
     # grab input
     data = np.loadtxt(csvname, delimiter=',')
     self.x = data[:, :-1]
     self.y = data[:, -1]
     self.x.shape = (len(self.x), 1)
     self.y.shape = (len(self.y), 1)
    def test_structure(self):
        nelx, nely = 60, 20

        left_wall = list(range(0, 2 * (nely + 1), 2))
        right_corner = [2 * (nelx + 1) * (nely + 1) - 1]
        fixdofs = np.asarray(left_wall + right_corner)
        alldofs = np.arange(2 * (nely + 1) * (nelx + 1))
        freedofs = np.array(list(set(alldofs) - set(fixdofs)))

        forces = np.zeros(2 * (nely + 1) * (nelx + 1))
        forces[1] = -1.0

        args = topo_physics.default_args()
        args.update({
            'nelx': nelx,
            'nely': nely,
            'freedofs': freedofs,
            'fixdofs': fixdofs,
            'forces': forces
        })

        _, x, _ = topo_physics.run_toposim(args=args,
                                           loss_only=False,
                                           verbose=False)
        x = abs(x)  # remove negative zeros!

        path = os.path.join(os.path.dirname(__file__), 'truss_test.csv')
        # To regenerate, run the test binary directly, e.g., with
        # python ./neural_structural_optimization/topo_physics_test
        # after uncommenting this line:
        # np.savetxt(path, x, delimiter=",", fmt='%.0f',)
        target_struct = np.loadtxt(path, delimiter=',')

        npo.testing.assert_array_equal(x.round(0), target_struct)
def shape_fit_1d(m, step_size, u_func, num_flows=8, num_samples=1000):
    # Parameters
    h = np.tanh
    
    q_0_mu = np.array([0,0])
    q_0_sigma = 10
    D = q_0_mu.shape[0]

    # flows
    #lambda_flows = np.array([np.array([1., 1., 1., 1., 0.])])
    #lambda_flows = np.array([np.array([1., 1., 0.])]*num_flows)
    lambda_flows = np.loadtxt("./data_fit_1d/flow_params.txt")

    # 1D samples
    samples = np.random.randn(num_samples)[:,np.newaxis]
    #samples = np.random.uniform(-1, 1, num_samples)[:,np.newaxis]
    
    start = time.time()
    grad_energy_bound = autograd.grad(energy_bound)

    # JOINT PROBABILITY IS NEW U_FUNC
    #print(energy_bound(lambda_flows, samples, h, u_func))

    #target = lambda x: (sp.stats.norm.pdf((x-2)) + sp.stats.norm.pdf((x+2)))/2

    #gradient_descent(m, lambda_flows, grad_energy_bound, samples)
    flowed_samples = adam_solve(lambda_flows, grad_energy_bound, samples,
                                u_func, h, m, step_size)

    # Plot Transformed samples
    ax = setup_plot(u_func)
    ax.hist(flowed_samples, bins=100, alpha=0.5, density=True, label="Transformed Samples")
    #plt.savefig("./plots/adam_fit_test.png")
    ax.legend(loc='best')
    plt.savefig("./data_fit_1d/adam_fit.png")
 def __init__(self,csvname):
     # grab input
     data = np.loadtxt(csvname,delimiter = ',')
     self.x = data[:-1,:]
     self.y = data[-1:,:] 
     
     self.colors = ['salmon','cornflowerblue','lime','bisque','mediumaquamarine','b','m','g']
Exemple #8
0
def load(name, suffix=[]):
    path = path_to_test_resource("problems", *suffix)

    X = anp.loadtxt(os.path.join(path, "%s.x" % name))

    try:
        F = anp.loadtxt(os.path.join(path, "%s.f" % name))

        CV = None
        if os.path.exists(os.path.join(path, "%s.cv" % name)):
            CV = anp.loadtxt(os.path.join(path, "%s.cv" % name))

    except:
        return X, None, None

    return X, F, CV
Exemple #9
0
 def __init__(self,csvname):
     # grab input
     data = np.loadtxt(csvname,delimiter = ',').T
     self.x = data[:,:-1]
     self.y = data[:,-1]
     self.y.shape = (len(self.y),1)
     self.colors = ['salmon','cornflowerblue','lime','bisque','mediumaquamarine','b','m','g']
Exemple #10
0
def load(name, n_obj):
    path = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                        "resources", "WFG", "%sobj" % n_obj)

    X = anp.loadtxt(os.path.join(path, "%s.x" % name))

    try:
        F = anp.loadtxt(os.path.join(path, "%s.f" % name))

        CV = None
        if os.path.exists(os.path.join(path, "%s.cv" % name)):
            CV = anp.loadtxt(os.path.join(path, "%s.cv" % name))

    except:
        return X, None, None

    return X, F, CV
Exemple #11
0
def load_data(tag, fname, w, dim=2):
    d = np.loadtxt(fname, ndmin=2)
    if (np.shape(d)[0] != np.shape(w)[dim]):
        print("Number of rows=%d in file '%s' does not match weight cols=%d" %
              (np.shape(d)[0], fname, np.shape(w)[dim]))
        sys.exit()
    print("Loaded [%s] of %s data from '%s'" %
          ("x".join(map(str, np.shape(d))), tag, fname))
    return d
Exemple #12
0
def readImages(imageDir, nImages):
    imA = np.zeros((n_grid, n_grid, nImages))

    for i in range(0, nImages):
        imageId = str(i)
        impath = imageDir + str(imageId) + '.dat'
        imA[:, :, i] = np.loadtxt(impath)

    return imA
Exemple #13
0
    def load_data(self, csvname):
        data = np.loadtxt(csvname, delimiter=',')
        self.data = data

        x = data[0:2, :]
        y = data[-1, :][np.newaxis, :]

        special_class = +1
        return x, y, special_class
Exemple #14
0
def load_weights(tag, fname, nheads):
    w = np.loadtxt(fname, ndmin=2)
    if (np.shape(w)[0] % nheads != 0):
        print("Number of rows=%d is not divisible by nheads=%d in file '%s'" %
              (np.shape(w)[0], nheads, fname))
        sys.exit()
    w = np.reshape(w, (nheads, np.shape(w)[0] / nheads, np.shape(w)[1]))
    print("Loaded [%s] of %s weights from '%s'" %
          ("x".join(map(str, np.shape(w))), tag, fname))
    return w
 def __init__(self,csvname):
     # grab input
     data = np.loadtxt(csvname,delimiter = ',')
     self.x = data[:-1,:]
     self.y = data[-1:,:] 
     
     self.colors = [[1,0.8,0.5],[0,0.7,1]]
     
     # if 1-d regression data make sure points are sorted
     if np.shape(self.x)[1] == 1:
         ind = np.argsort(self.x.flatten())
         self.x = self.x[ind,:]
         self.y = self.y[ind,:]
Exemple #16
0
    def dump_state(self, xk):
        '''
    callback to save the state to disk during optimization
    '''
        filename = 'state.txt'

        if not os.path.exists(filename):
            past = np.zeros((0, xk.shape[0]))
        else:
            past = np.loadtxt(filename)
            if past.ndim < 2:
                past = past.reshape(1, -1)
        np.savetxt(filename, np.append(past, xk.reshape(1, -1), axis=0))
Exemple #17
0
    def __init__(self, csvname):
        # grab input
        data = np.loadtxt(csvname, delimiter=',')
        self.x = data[:-1, :]
        self.y = data[-1:, :]

        # if 1-d regression data make sure points are sorted
        if np.shape(self.x)[1] == 1:
            ind = np.argsort(self.x.flatten())
            self.x = self.x[ind, :]
            self.y = self.y[ind, :]

        cost_evals = [v / float(np.size(self.y)) for v in cost_evals]
def restore_checkpoint(output_folder, shared_file_object=True, optimizer=None):

    i_epoch, i_batch = [
        int(i)
        for i in np.loadtxt(os.path.join(output_folder, 'checkpoint.txt'))
    ]
    if not shared_file_object:
        obj = np.load(os.path.join(output_folder, 'obj_checkpoint.npy'))
        obj_delta = np.take(obj, 0, axis=-1)
        obj_beta = np.take(obj, 1, axis=-1)
        optimizer.restore_param_arrays_from_checkpoint()
        return i_epoch, i_batch, obj_delta, obj_beta
    else:
        return i_epoch, i_batch
Exemple #19
0
    def load_data(self, csvname):
        data = np.loadtxt(csvname, delimiter=',').T
        self.x = data[:, :-1:]
        self.y = data[:, -1:]

        # center input
        mean1 = np.mean(self.x[:, 0])
        mean2 = np.mean(self.x[:, 1])
        std1 = np.std(self.x[:, 0])
        std2 = np.std(self.x[:, 1])
        self.x[:, 0] -= mean1
        self.x[:, 0] /= std1
        self.x[:, 1] -= mean2
        self.x[:, 1] /= std2
Exemple #20
0
    def __init__(self, csvname):
        # grab input
        data = np.loadtxt(csvname, delimiter=',')
        data = data.T
        self.x = data[:, :-1]
        self.y = data[:, -1:]
        self.colors = [
            'salmon', 'cornflowerblue', 'lime', 'bisque', 'mediumaquamarine',
            'b', 'm', 'g'
        ]

        # if 1-d regression data make sure points are sorted
        if np.shape(self.x)[1] == 1:
            ind = np.argsort(self.x.flatten())
            self.x = self.x[ind, :]
            self.y = self.y[ind, :]
Exemple #21
0
def main():
    global args , x , y ,logx
    args = parser.parse_args()
    datapath = 'datasets/'
    csvname = datapath + args.csvname
    data = np.loadtxt(csvname,delimiter = ',')
    #load in data
    x = data[:-1,:]
    y = data[-1:,:]
    logx = np.log(x)
    y = np.log(y)
    x = np.concatenate((np.ones((1,1498),dtype=float),logx))

    weights = np.random.rand(x.shape[0],1) #initial weights
    weight_his, cost_his  = gd(square_cost, args.lr, args.iteration, weights)
    if args.draw:
        draw_pic(weight_his,cost_his)
Exemple #22
0
def get_init(init_type, ndof):
    if init_type == 'rand':
        init = np.random.random(ndof)
    elif init_type == 'vac':
        init = np.zeros(ndof) + 1e-5 * np.random.random(ndof)
    elif init_type == 'one':
        init = np.ones(ndof)
    else:
        tmp = open(init_type, 'r')
        initfile = np.loadtxt(tmp)

        if len(initfile) == ndof:
            init = initfile
        elif len(initfile) < ndof:
            init = np.zeros(ndof, dtype=float)
            init[:len(initfile)] = initfile

    return init
Exemple #23
0
def runSB(imageDir, saveDir, psf, psf_k, imageArray):
    nImages = np.shape(imageArray)[2]
    results = imageArray * 0

    for imageIdx in range(0, nImages):
        if imageIdx < start:
            continue
        grndpath = imageDir + str(imageIdx) + '.truth'
        grnd = np.loadtxt(grndpath)
        no_source = np.shape(grnd)[0]
        if len(np.shape(grnd)) < 2:
            no_source = 1
        img = imageArray[:, :, imageIdx]
        sb = SparseBayes(img, psf, psf_k, no_source)
        results[:, :, imageIdx] = sb.res
        s = saveDir + str(imageIdx) + '.out'
        np.savetxt(s, sb.res)
        #plt.imshow(results[:,:,imageIdx]);
        #plt.show();
    return results
Exemple #24
0
def main():
    global args, x, y
    args = parser.parse_args()
    datapath = 'datasets/'
    csvname = datapath + args.csvname
    data = np.loadtxt(csvname,delimiter = ',')

    x = data[:-1,:]
    y = data[-1:,:] 
    x = np.concatenate((np.ones((1,x.shape[1]),dtype=float),x))

    weights = np.random.rand(x.shape[0],1)    
    alpha = [0.1,0.01]
    weight_his1, cost_his1, wrong_num1 = gd2(cost_function, args.lr1, args.iteration, weights)
    weight_his2, cost_his2, wrong_num2 = gd2(cost_function, args.lr2, args.iteration, weights)
    update_weight1 = weight_his1[-1]
    update_weight2 = weight_his2[-1]
    res1 = np.sign(np.dot(x.T,update_weight1))
    res2 = np.sign(np.dot(x.T,update_weight2))
    acc1 = accuracy(res1,y)
    acc2 = accuracy(res2,y)
    print('the accuracy when lr=0.1 after 50 iterations is {:.3f}'.format(acc1))
    print('the accuracy when lr=0.01 after 50 iterations is {:.3f}'.format(acc2))

    if args.draw:
        plt.figure(21,figsize=(8,6))
        #draw pic1
        plt.subplot(211)
        plt.tight_layout(5)
        plt.title('cost function history plot')
        plt.plot([i for i in range(args.iteration+1)],cost_his1,'b')
        plt.plot([i for i in range(args.iteration+1)],cost_his2,'r')
        plt.legend(['$lr=0.1$','$lr=0.01$'])

        #draw pic2
        plt.subplot(212)
        plt.title('misclassification history plot')
        plt.scatter([i for i in range(args.iteration+1)],wrong_num1)
        plt.scatter([i for i in range(args.iteration+1)],wrong_num2)
        plt.legend(['$lr=0.1$','$lr=0.01$'])
        plt.show()
Exemple #25
0
def read_image(fframe, data_set='BTLS', background_subtract=False):
    ''' read given image

    :param fframe: 
        file name. Currently assumes that the file can be opened using
        PIL.Image

    :param background_subtract:
        If True, sigmaclipped background subtraction (default: False) 
    '''
    if data_set == 'BTLS':
        im = Image.open(fframe)
        imarr = np.array(im)
    elif dataset == 'mock_alpha':
        imarr = np.loadtxt(fframe)

    noise_level = 0.
    if background_subtract:
        # if true, simple sigmaclipped background subtraction
        noise_level = np.median(stats.sigmaclip(imarr.flatten(), high=3.)[0])
    return imarr - noise_level
    def load_data(self,csvname):
        data = np.loadtxt(csvname,delimiter = ',')
        self.data = data

        x = data[0:2,:]
        y = data[-1,:][np.newaxis,:]

        # remove points from one class for illustrative purposes
        ind0 = np.argwhere(y == -1)
        ind0 = [v[1] for v in ind0]
        ind1 = np.argwhere(y == +1)
        ind1 = [v[1] for v in ind1]

        ind0 = ind0[-5:]
        inds = ind0 + ind1
        
        x = x[:,inds]
        y = y[:,inds]
        
        special_class = -1
        return x,y,special_class
Exemple #27
0
def _load_boston():
    """
    Attribute Information:

    1. CRIM: per capita crime rate by town 
    2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft. 
    3. INDUS: proportion of non-retail business acres per town 
    4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 
    5. NOX: nitric oxides concentration (parts per 10 million) 
    6. RM: average number of rooms per dwelling 
    7. AGE: proportion of owner-occupied units built prior to 1940 
    8. DIS: weighted distances to five Boston employment centres 
    9. RAD: index of accessibility to radial highways 
    10. TAX: full-value property-tax rate per $10,000 
    11. PTRATIO: pupil-teacher ratio by town 
    12. B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town 
    13. LSTAT: % lower status of the population 
    14. MEDV: Median value of owner-occupied homes in $1000's
    """
    data = np.loadtxt(
        os.path.join(data_dir, 'boston-housing/boston_housing.txt'))
    X = data[:, :-1]
    y = data[:, -1]
    return X, y
# vector of time windows
T_vec = np.arange(Ts, T_bar, Ts)
# number of trials
M = 100
# vector of data
rate_data = np.zeros((len(T_vec), M))

# input matrix
B = I
# output matrix
C = I

for pp in range(M):

    # upload C. elegans connectivity matrix (insert full file path)
    A = np.loadtxt("insert_full_path/A_C_elegans.txt", usecols=range(n))

    for tt in range(279):
        for qq in range(279):
            if tt > qq:
                if random() < 0.5:
                    A_tmp = A[tt, qq]
                    A[tt, qq] = A[qq, tt]
                    A[qq, tt] = A_tmp

    w, v = np.linalg.eig(A)
    A = A - (max(np.real(w)) + 0.1) * I

    # vector of transmission rates
    rate_vec = np.zeros(len(T_vec))
Exemple #29
0
with bl.Model() as m:
    X = bl.Placeholder('X', dimensions=agnp.array([100, 784]))
    encoder = bl.ml.neural_network.DenseNeuralNetwork(
        'Encoder',
        X,
        layer_dims=[784, 50, 20],
        nonlinearity=bl.math.utils.sigmoid)
    decoder = bl.ml.neural_network.DenseNeuralNetwork(
        'Decoder',
        encoder,
        layer_dims=[20, 50, 784],
        nonlinearity=bl.math.utils.sigmoid,
        last_layer_nonlinearity=bl.math.utils.sigmoid)
    y = bl.rvs.Bernoulli('obs', decoder, observed=X)

    fit_params = agnp.loadtxt("pos.txt", delimiter=',')
    m.set_param(fit_params)
    out = m.evaluate(decoder, feed_dict={X: train_images})

    for i in range(out.shape[1]):
        out[0, i, :] = out[0, i, :] > 0.5

    fig, ax = plt.subplots(10, 10)

    for i in range(10):
        for j in range(10):
            ax[i, j].imshow(out[0, i * 10 + j, :].reshape(28, 28))
            ax[i, j].axis('off')

    plt.show()
Exemple #30
0
 def __init__(self, csvname):
     # grab input
     data = np.loadtxt(csvname, delimiter=',')
     data = data.T
     self.x = data[:, :-1]
     self.y = data[:, -1]