def test_inner_product_hvp(): for datatype in backends: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3, 1]) v = ad.Variable(name="v", shape=[3, 1]) y = ad.sum(ad.einsum("ab,bc->ac", ad.transpose(x), x)) grad_x, = ad.gradients(y, [x]) Hv, = ad.hvp(output_node=y, node_list=[x], vector_list=[v]) executor = ad.Executor([y, grad_x, Hv]) x_val = T.tensor([[1.], [2.], [3]]) # 3x1 v_val = T.tensor([[1.], [2.], [3]]) # 3x1 y_val, grad_x_val, Hv_val = executor.run(feed_dict={ x: x_val, v: v_val }) expected_yval = T.sum(T.dot(T.transpose(x_val), x_val)) expected_grad_x_val = 2 * x_val expected_hv_val = 2 * v_val assert isinstance(y, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(grad_x_val, expected_grad_x_val) assert T.array_equal(Hv_val, expected_hv_val)
def test_add_mul_mix_2(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[3]) x2 = ad.Variable(name="x2", shape=[3]) x3 = ad.Variable(name="x3", shape=[3]) x4 = ad.Variable(name="x4", shape=[3]) y = ad.sum(x1 + x2 * x3 * x4) grad_x1, grad_x2, grad_x3, grad_x4 = ad.gradients(y, [x1, x2, x3, x4]) executor = ad.Executor([y, grad_x1, grad_x2, grad_x3, grad_x4]) x1_val = 1 * T.ones(3) x2_val = 2 * T.ones(3) x3_val = 3 * T.ones(3) x4_val = 4 * T.ones(3) y_val, grad_x1_val, grad_x2_val, grad_x3_val, grad_x4_val = executor.run( feed_dict={ x1: x1_val, x2: x2_val, x3: x3_val, x4: x4_val }) assert isinstance(y, ad.Node) assert T.array_equal(y_val, T.sum(x1_val + x2_val * x3_val * x4_val)) assert T.array_equal(grad_x1_val, T.ones_like(x1_val)) assert T.array_equal(grad_x2_val, x3_val * x4_val) assert T.array_equal(grad_x3_val, x2_val * x4_val) assert T.array_equal(grad_x4_val, x2_val * x3_val)
def test_add_jacobian_scalar(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[]) x2 = ad.Variable(name="x2", shape=[]) y = x1 + x2 jacobian_x2, = ad.jacobians(y, [x2]) executor = ad.Executor([y, jacobian_x2]) x1_val = T.tensor(1.) x2_val = T.tensor(1.) y_val, jacobian_x2_val = executor.run(feed_dict={ x1: x1_val, x2: x2_val }) expected_jacobian_x2_val = T.tensor(1.) assert isinstance(y, ad.Node) assert isinstance(jacobian_x2, ad.Node) assert T.array_equal(y_val, x1_val + x2_val) assert T.array_equal(jacobian_x2_val, expected_jacobian_x2_val)
def test_mul_jacobian_one_scalar(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[]) x2 = ad.Variable(name="x2", shape=[2, 2]) # test both cases of left and right multiply a scalar for y in [x1 * x2, x2 * x1]: jacobian_x1, jacobian_x2 = ad.jacobians(y, [x1, x2]) executor = ad.Executor([y, jacobian_x1, jacobian_x2]) x1_val = T.tensor(2.) x2_val = T.tensor([[5., 6.], [7., 8.]]) y_val, jacobian_x1_val, jacobian_x2_val = executor.run(feed_dict={ x1: x1_val, x2: x2_val }) I = T.identity(2) expected_jacobian_x1_val = T.einsum("ai,bj,ij->ab", I, I, x2_val) expected_jacobian_x2_val = x1_val * T.einsum("ai,bj->abij", I, I) assert isinstance(y, ad.Node) assert T.array_equal(y_val, x1_val * x2_val) assert T.array_equal(jacobian_x1_val, expected_jacobian_x1_val) assert T.array_equal(jacobian_x2_val, expected_jacobian_x2_val)
def test_add_jacobian(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[2, 2]) x2 = ad.Variable(name="x2", shape=[2, 2]) y = x1 + x2 jacobian_x2, = ad.jacobians(y, [x2]) executor = ad.Executor([y, jacobian_x2]) x1_val = T.tensor([[1, 1], [1, 1]]) x2_val = T.tensor([[1, 1], [1, 1]]) y_val, jacobian_x2_val = executor.run(feed_dict={ x1: x1_val, x2: x2_val }) I = T.identity(2) expected_jacobian_x2_val = T.einsum("ac,bd->abcd", I, I) assert isinstance(y, ad.Node) assert isinstance(jacobian_x2, ad.Node) assert T.array_equal(y_val, x1_val + x2_val) assert T.array_equal(jacobian_x2_val, expected_jacobian_x2_val)
def test_vjps(): for datatype in backends: T.set_backend(datatype) x = ad.Variable(name="x", shape=[2]) A = ad.Variable(name="A", shape=[3, 2]) v = ad.Variable(name="v", shape=[3]) y = ad.einsum('ab, b->a', A, x) transposed_vjp_x, = ad.transposed_vjps(y, [x], v) executor = ad.Executor([y, transposed_vjp_x]) x_val = T.tensor([1., 2.]) # 1x3 A_val = T.tensor([[1., 2.], [3., 4.], [5, 6]]) v_val = T.tensor([1., 2., 3.]) y_val, transposed_vjp_x_val = executor.run(feed_dict={ x: x_val, A: A_val, v: v_val }) expected_yval = T.einsum('ab, b->a', A_val, x_val) expected_transposed_vjp_x_val = T.einsum('b, ba->a', v_val, A_val) assert isinstance(transposed_vjp_x, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(transposed_vjp_x_val, expected_transposed_vjp_x_val)
def test_three_mul_jacobian(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[2, 2]) x2 = ad.Variable(name="x2", shape=[2, 2]) x3 = ad.Variable(name="x3", shape=[2, 2]) y = x1 * x2 * x3 jacobian_x1, = ad.jacobians(y, [x1]) executor = ad.Executor([y, jacobian_x1]) x1_val = T.tensor([[1., 2.], [3., 4.]]) x2_val = T.tensor([[5., 6.], [7., 8.]]) x3_val = T.tensor([[9., 10.], [11., 12.]]) y_val, jacobian_x1_val = executor.run(feed_dict={ x1: x1_val, x2: x2_val, x3: x3_val }) I = T.identity(2) expected_jacobian_x1_val = T.einsum("ai,bj,ij,ij->abij", I, I, x2_val, x3_val) assert isinstance(y, ad.Node) assert T.array_equal(y_val, x1_val * x2_val * x3_val) assert T.array_equal(jacobian_x1_val, expected_jacobian_x1_val)
def test_three_mul_jacobian_scalars(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[]) x2 = ad.Variable(name="x2", shape=[]) x3 = ad.Variable(name="x3", shape=[]) y = x1 * x2 * x3 jacobian_x1, = ad.jacobians(y, [x1]) executor = ad.Executor([y, jacobian_x1]) x1_val = T.tensor(1.) x2_val = T.tensor(2.) x3_val = T.tensor(3.) y_val, jacobian_x1_val = executor.run(feed_dict={ x1: x1_val, x2: x2_val, x3: x3_val }) expected_jacobian_x1_val = x2_val * x3_val assert isinstance(y, ad.Node) assert T.array_equal(y_val, x1_val * x2_val * x3_val) assert T.array_equal(jacobian_x1_val, expected_jacobian_x1_val)
def test_einsum(): for datatype in backends: T.set_backend(datatype) x2 = ad.Variable(name="x2", shape=[3, 2]) x3 = ad.Variable(name="x3", shape=[2, 3]) matmul = ad.einsum('ik,kj->ij', x2, x3) y = ad.sum(matmul) grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = T.tensor([[1, 2], [3, 4], [5, 6]]) # 3x2 x3_val = T.tensor([[7, 8, 9], [10, 11, 12]]) # 2x3 y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={ x2: x2_val, x3: x3_val }) expected_grad_sum = T.ones_like(T.dot(x2_val, x3_val)) expected_yval = T.sum(T.dot(x2_val, x3_val)) expected_grad_x2_val = T.dot(expected_grad_sum, T.transpose(x3_val)) expected_grad_x3_val = T.dot(T.transpose(x2_val), expected_grad_sum) assert isinstance(y, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(grad_x2_val, expected_grad_x2_val) assert T.array_equal(grad_x3_val, expected_grad_x3_val)
def test_jtjvps(): for datatype in backends: T.set_backend(datatype) x = ad.Variable(name="x", shape=[2]) A = ad.Variable(name="A", shape=[3, 2]) v = ad.Variable(name="v", shape=[2]) y = ad.einsum('ab, b->a', A, x) jtjvp_x, = ad.jtjvps(y, [x], [v]) executor = ad.Executor([y, jtjvp_x]) x_val = T.tensor([1., 2.]) A_val = T.tensor([[1., 2.], [3., 4.], [5, 6]]) v_val = T.tensor([3., 4.]) y_val, jtjvp_x_val = executor.run(feed_dict={ x: x_val, A: A_val, v: v_val }) expected_yval = T.einsum('ab, b->a', A_val, x_val) expected_jtjvp_x_val = T.einsum('ba, ac->bc', T.transpose(A_val), A_val) expected_jtjvp_x_val = T.einsum('ab, b->a', expected_jtjvp_x_val, v_val) assert isinstance(jtjvp_x, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(jtjvp_x_val, expected_jtjvp_x_val)
def test_add_mul_mix_3(backendopt): for datatype in backendopt: T.set_backend(datatype) x2 = ad.Variable(name="x2", shape=[3]) x3 = ad.Variable(name="x3", shape=[3]) z = x2 * x2 + x2 + x3 + 3 y = ad.sum(z * z + x3) grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * T.ones(3) x3_val = 3 * T.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={ x2: x2_val, x3: x3_val }) z_val = x2_val * x2_val + x2_val + x3_val + 3 expected_yval = z_val * z_val + x3_val expected_grad_x2_val = 2 * \ (x2_val * x2_val + x2_val + x3_val + 3) * (2 * x2_val + 1) expected_grad_x3_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) + 1 assert isinstance(y, ad.Node) assert T.array_equal(y_val, T.sum(expected_yval)) assert T.array_equal(grad_x2_val, expected_grad_x2_val) assert T.array_equal(grad_x3_val, expected_grad_x3_val)
def test_s2s_hvp(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3]) H = ad.Variable(name="H", shape=[3, 3]) v = ad.Variable(name="v", shape=[3]) y = ad.einsum("a,ab,b->", x, H, x) grad_x, = ad.gradients(y, [x]) Hv, = ad.hvp(output_node=y, node_list=[x], vector_list=[v]) x_val = T.tensor([1., 2., 3.]) # 3 v_val = T.tensor([1., 2., 3.]) # 3 H_val = T.tensor([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]) # 3x3 expected_yval = T.einsum("a,ab,b->", x_val, H_val, x_val) expected_grad_x_val = 2 * T.einsum("ab,b->a", H_val, x_val) expected_hv_val = T.tensor([4., 8., 12.]) StS = SourceToSource() forward_str = StS.forward([y], backend=datatype) m = import_code(forward_str) y_val_s2s, = m.forward([x_val, H_val]) grad_str = StS.gradients(y, [x], backend=datatype) m = import_code(grad_str) grad_x_val_s2s, = m.gradients([x_val, H_val]) hvp_str = StS.hvp(y, [x], [v], backend=datatype) m = import_code(hvp_str) Hv_val_s2s, = m.hvp([x_val, H_val, v_val]) assert isinstance(y, ad.Node) assert T.array_equal(y_val_s2s, expected_yval) assert T.array_equal(grad_x_val_s2s, expected_grad_x_val) assert T.array_equal(Hv_val_s2s, expected_hv_val)
def test_jacobian_einsum(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[3, 3, 3]) x2 = ad.Variable(name="x2", shape=[3, 3, 3]) y = ad.einsum("ikl,jkl->ijk", x1, x2) jacobian_x1, jacobian_x2 = ad.jacobians(y, [x1, x2]) executor = ad.Executor([y, jacobian_x1, jacobian_x2]) x1_val = T.random((3, 3, 3)) x2_val = T.random((3, 3, 3)) y_val, jacobian_x1_val, jacobian_x2_val = executor.run(feed_dict={ x1: x1_val, x2: x2_val, }) I = T.identity(3) expected_jacobian_x1_val = T.einsum("im,kn,jno->ijkmno", I, I, x2_val) expected_jacobian_x2_val = T.einsum("jm,kn,ino->ijkmno", I, I, x1_val) assert isinstance(y, ad.Node) assert T.array_equal(y_val, T.einsum("ikl,jkl->ijk", x1_val, x2_val)) assert T.array_equal(jacobian_x1_val, expected_jacobian_x1_val) assert T.array_equal(jacobian_x2_val, expected_jacobian_x2_val)
def test_sub_jacobian_w_chain(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[2, 2]) x2 = ad.Variable(name="x2", shape=[2, 2]) x3 = ad.Variable(name="x3", shape=[2, 2]) y = x1 - x2 z = x3 - y jacobian_x2, = ad.jacobians(z, [x2]) executor = ad.Executor([z, jacobian_x2]) x1_val = T.tensor([[1, 1], [1, 1]]) x2_val = T.tensor([[1, 1], [1, 1]]) x3_val = T.tensor([[1, 1], [1, 1]]) z_val, jacobian_x2_val = executor.run(feed_dict={ x1: x1_val, x2: x2_val, x3: x3_val }) I = T.identity(2) expected_jacobian_x2_val = T.einsum("ac,bd->abcd", I, I) assert isinstance(z, ad.Node) assert isinstance(jacobian_x2, ad.Node) assert T.array_equal(z_val, x3_val - x1_val + x2_val) assert T.array_equal(jacobian_x2_val, expected_jacobian_x2_val)
def test_hvp2(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3, 1]) H = ad.Variable(name="H", shape=[3, 3]) v = ad.Variable(name="v", shape=[3, 1]) y = ad.sum( ad.einsum("ab,bc->ac", ad.einsum("ab,bc->ac", ad.transpose(x), H), x)) grad_x, = ad.gradients(y, [x]) Hv, = ad.hvp(output_node=y, node_list=[x], vector_list=[v]) executor = ad.Executor([y, grad_x, Hv]) x_val = T.tensor([[1.], [2.], [3]]) # 3x1 v_val = T.tensor([[1.], [2.], [3]]) # 3x1 H_val = T.tensor([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]) # 3x3 y_val, grad_x_val, Hv_val = executor.run(feed_dict={ x: x_val, H: H_val, v: v_val }) Hx = T.dot(H_val, x_val) expected_yval = T.sum(T.dot(T.transpose(x_val), Hx)) expected_grad_x_val = 2 * Hx expected_hv_val = T.tensor([[4.], [8.], [12.]]) assert isinstance(y, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(grad_x_val, expected_grad_x_val) assert T.array_equal(Hv_val, expected_hv_val)
def test_s2s_jtjvp(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[2]) A = ad.Variable(name="A", shape=[3, 2]) v = ad.Variable(name="v", shape=[2]) y = ad.einsum("ab,b->a", A, x) jtjvp_x, = ad.jtjvps(y, [x], [v]) x_val = T.tensor([1., 2.]) A_val = T.tensor([[1., 2.], [3., 4.], [5, 6]]) v_val = T.tensor([3, 4]) expected_jtjvp_x_val = T.einsum("ba,bc,c->a", A_val, A_val, v_val) StS = SourceToSource() forward_str = StS.forward([jtjvp_x], function_name='jtjvp', backend=datatype) m = import_code(forward_str) jtjvp_x_val_s2s, = m.jtjvp([A_val, v_val]) assert isinstance(jtjvp_x, ad.Node) assert T.array_equal(jtjvp_x_val_s2s, expected_jtjvp_x_val)
def test_negative(backendopt): for datatype in backendopt: T.set_backend(datatype) x2 = ad.Variable(name="x2", shape=[3]) y = ad.sum(-x2) grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * T.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) assert isinstance(y, ad.Node) assert T.array_equal(y_val, T.sum(-x2_val)) assert T.array_equal(grad_x2_val, -T.ones_like(x2_val))
def test_jacobian_summation_einsum(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[2, 2]) x_sum = ad.einsum('ij->', x) grad_x, = ad.jacobians(x_sum, [x]) executor = ad.Executor([x_sum, grad_x]) x_val = T.tensor([[1., 2.], [3., 4.]]) x_sum_val, grad_x_val = executor.run(feed_dict={x: x_val}) expected_x_sum_val = T.sum(x_val) expected_grad_x_val = T.ones_like(x_val) assert T.array_equal(x_sum_val, expected_x_sum_val) assert T.array_equal(grad_x_val, expected_grad_x_val)
def test_tensorinv_matrix(): for datatype in backends: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3, 3]) inv_x = ad.tensorinv(x) executor = ad.Executor([inv_x]) x_val = T.random([3, 3]) inv_x_val, = executor.run(feed_dict={x: x_val}) assert T.array_equal(inv_x_val, T.inv(x_val))
def test_summation_einsum_2(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[2, 2]) y = ad.Variable(name="y", shape=[2, 2]) out = ad.sum(ad.einsum('ij,ab->ab', x, y)) grad_x, = ad.gradients(out, [x]) executor = ad.Executor([out, grad_x]) x_val = T.tensor([[1., 2.], [3., 4.]]) y_val = T.tensor([[5., 6.], [7., 8.]]) out_val, grad_x_val = executor.run(feed_dict={x: x_val, y: y_val}) expected_out_val = T.sum(T.einsum('ij,ab->ab', x_val, y_val)) expected_grad_x_val = T.sum(y_val) * T.ones_like(x_val) assert T.array_equal(out_val, expected_out_val) assert T.array_equal(grad_x_val, expected_grad_x_val)
def test_inner_product_einsum(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3]) x_inner = ad.einsum('i,i->', x, x) grad_x, = ad.gradients(x_inner, [x]) executor = ad.Executor([x_inner, grad_x]) x_val = T.tensor([3., 4.]) # 1x2 y_val, grad_x_val = executor.run(feed_dict={x: x_val}) expected_yval = T.norm(x_val)**2 expected_grad_x_val = 2 * x_val assert isinstance(x_inner, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(grad_x_val, expected_grad_x_val)
def test_jacobian_trace_einsum(backendopt): for datatype in backendopt: if datatype == 'taco': continue T.set_backend(datatype) x = ad.Variable(name="x", shape=[2, 2]) trace = ad.einsum('ii->', x) grad_x, = ad.jacobians(trace, [x]) executor = ad.Executor([trace, grad_x]) x_val = T.tensor([[1., 2.], [3., 4.]]) trace_val, grad_x_val = executor.run(feed_dict={x: x_val}) expected_trace_val = T.einsum('ii->', x_val) expected_grad_x_val = T.identity(2) assert T.array_equal(trace_val, expected_trace_val) assert T.array_equal(grad_x_val, expected_grad_x_val)
def test_trace_einsum(backendopt): for datatype in backendopt: if datatype == 'taco': continue # Currently taco doesn't support same subscript in one operand. T.set_backend(datatype) x = ad.Variable(name="x", shape=[2, 2]) trace = ad.einsum('ii->', x) grad_x, = ad.gradients(trace, [x]) executor = ad.Executor([trace, grad_x]) x_val = T.tensor([[1., 2.], [3., 4.]]) trace_val, grad_x_val = executor.run(feed_dict={x: x_val}) expected_trace_val = T.einsum('ii->', x_val) expected_grad_x_val = T.identity(2) assert T.array_equal(trace_val, expected_trace_val) assert T.array_equal(grad_x_val, expected_grad_x_val)
def test_transpose_einsum(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3, 2]) y = ad.sum(ad.einsum("ij->ji", x)) grad_x, = ad.gradients(y, [x]) executor = ad.Executor([y, grad_x]) x_val = T.tensor([[1, 2], [3, 4], [5, 6]]) # 3x2 y_val, grad_x_val = executor.run(feed_dict={x: x_val}) expected_yval = T.sum(T.transpose(x_val)) expected_grad_x_val = T.ones_like(x_val) assert isinstance(y, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(grad_x_val, expected_grad_x_val)
def test_jvps(): for datatype in backends: T.set_backend(datatype) x1 = ad.Variable(name="x1", shape=[2]) A1 = ad.Variable(name="A1", shape=[3, 2]) x2 = ad.Variable(name="x2", shape=[2]) A2 = ad.Variable(name="A2", shape=[3, 2]) v1 = ad.Variable(name="v1", shape=[2]) v2 = ad.Variable(name="v2", shape=[2]) y = ad.einsum('ab, b->a', A1, x1) + ad.einsum('ab, b->a', A2, x2) transposed_vjp_x = ad.jvps(y, [x1, x2], [v1, v2]) executor = ad.Executor([y, transposed_vjp_x]) x1_val = T.tensor([1., 2.]) A1_val = T.tensor([[1., 2.], [3., 4.], [5, 6]]) v1_val = T.tensor([3., 4.]) x2_val = T.tensor([1., 2.]) A2_val = T.tensor([[1., 2.], [3., 4.], [5, 6]]) v2_val = T.tensor([3., 4.]) y_val, transposed_vjp_x_val = executor.run(feed_dict={ x1: x1_val, A1: A1_val, v1: v1_val, x2: x2_val, A2: A2_val, v2: v2_val }) expected_yval = T.einsum('ab, b->a', A1_val, x1_val) + T.einsum( 'ab, b->a', A2_val, x2_val) expected_transposed_vjp_x_val = T.einsum( 'ab, b->a', A1_val, v1_val) + T.einsum('ab, b->a', A2_val, v2_val) assert isinstance(transposed_vjp_x, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(transposed_vjp_x_val, expected_transposed_vjp_x_val)
def test_mul_const_jacobian(backendopt): for datatype in backendopt: T.set_backend(datatype) x1 = ad.Variable(name="x2", shape=[2, 2]) jacobian_x1, = ad.jacobians(2 * x1, [x1]) executor = ad.Executor([jacobian_x1]) x1_val = T.tensor([[5., 6.], [7., 8.]]) jacobian_x1_val, = executor.run(feed_dict={x1: x1_val}) I = T.identity(2) expected_jacobian_x1_val = 2 * T.einsum("ai,bj->abij", I, I) assert T.array_equal(jacobian_x1_val, expected_jacobian_x1_val)
def test_norm(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3, 2]) y = ad.norm(x) z = y**2 grad_x, = ad.gradients(z, [x]) executor = ad.Executor([z, grad_x]) x_val = T.tensor([[1., 2.], [3., 4.], [5., 6.]]) # 3x2 z_val, grad_x_val = executor.run(feed_dict={x: x_val}) expected_zval = T.norm(x_val)**2 expected_grad_x_val = 2 * x_val assert isinstance(z, ad.Node) assert T.array_equal(z_val, expected_zval) assert T.array_equal(grad_x_val, expected_grad_x_val)
def test_einsum_3op(backendopt): for datatype in backendopt: T.set_backend(datatype) x2 = ad.Variable(name="x2", shape=[3, 2]) x3 = ad.Variable(name="x3", shape=[2, 3]) x4 = ad.Variable(name="x4", shape=[3, 2]) matmul = ad.einsum('ik,kj,jl->il', x2, x3, x4) y = ad.sum(matmul) grad_x2, grad_x3, grad_x4 = ad.gradients(y, [x2, x3, x4]) executor = ad.Executor([y, grad_x2, grad_x3, grad_x4]) x2_val = T.tensor([[1, 2], [3, 4], [5, 6]]) # 3x2 x3_val = T.tensor([[7, 8, 9], [10, 11, 12]]) # 2x3 x4_val = T.tensor([[1, 2], [3, 4], [5, 6]]) # 3x2 y_val, grad_x2_val, grad_x3_val, grad_x4_val = executor.run(feed_dict={ x2: x2_val, x3: x3_val, x4: x4_val }) expected_grad_sum = T.ones_like(T.dot(T.dot(x2_val, x3_val), x4_val)) expected_yval = T.sum(T.dot(T.dot(x2_val, x3_val), x4_val)) expected_grad_x2_val = T.einsum("il, kj, jl->ik", expected_grad_sum, x3_val, x4_val) expected_grad_x3_val = T.einsum("ik, il, jl->kj", x2_val, expected_grad_sum, x4_val) expected_grad_x4_val = T.einsum("ik, kj, il->jl", x2_val, x3_val, expected_grad_sum) assert isinstance(y, ad.Node) assert T.array_equal(y_val, expected_yval) assert T.array_equal(grad_x2_val, expected_grad_x2_val) assert T.array_equal(grad_x3_val, expected_grad_x3_val) assert T.array_equal(grad_x4_val, expected_grad_x4_val)
def test_tensorinv_odd_dim(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[24, 8, 3]) inv_x = ad.tensorinv(x, ind=1) assert inv_x.shape == [8, 3, 24] assert inv_x.input_indices_length == 2 executor = ad.Executor([inv_x]) x_val = T.random([24, 8, 3]) inv_x_val, = executor.run(feed_dict={x: x_val}) assert T.array_equal(inv_x_val, T.tensorinv(x_val, ind=1))
def test_s2s_tensorinv(backendopt): for datatype in backendopt: T.set_backend(datatype) A = ad.Variable(name="A", shape=[2, 2]) B = ad.tensorinv(A) A_val = T.tensor([[1., 0.], [0., 1.]]) StS = SourceToSource() fwd_str = StS.forward([B], function_name='fwd', backend=datatype) m = import_code(fwd_str) out, = m.fwd([A_val]) assert T.array_equal(A_val, out)