def _build_block(self, hp, output_node, block_type): max_tokens = self.max_tokens or hp.Choice( MAX_TOKENS, [500, 5000, 20000], default=5000) if block_type == NGRAM: output_node = preprocessing.TextToNgramVector( max_tokens=max_tokens).build(hp, output_node) return basic.DenseBlock().build(hp, output_node) if block_type == BERT: output_node = basic.BertBlock().build(hp, output_node) else: output_node = preprocessing.TextToIntSequence( max_tokens=max_tokens).build(hp, output_node) if block_type == TRANSFORMER: output_node = basic.Transformer( max_features=max_tokens + 1, pretraining=self.pretraining, ).build(hp, output_node) else: output_node = basic.Embedding( max_features=max_tokens + 1, pretraining=self.pretraining, ).build(hp, output_node) output_node = basic.ConvBlock().build(hp, output_node) output_node = reduction.SpatialReduction().build(hp, output_node) output_node = basic.DenseBlock().build(hp, output_node) return output_node
def build(self, hp, inputs=None): input_node = nest.flatten(inputs)[0] output_node = input_node block_type = self.block_type or hp.Choice( 'block_type', ['vanilla', 'transformer', 'ngram'], default='vanilla') max_tokens = self.max_tokens or hp.Choice( 'max_tokens', [500, 5000, 20000], default=5000) if block_type == 'ngram': output_node = preprocessing.TextToNgramVector( max_tokens=max_tokens).build(hp, output_node) output_node = basic.DenseBlock().build(hp, output_node) else: output_node = preprocessing.TextToIntSequence( max_tokens=max_tokens).build(hp, output_node) if block_type == 'transformer': output_node = basic.Transformer( max_features=max_tokens + 1, pretraining=self.pretraining).build(hp, output_node) else: output_node = basic.Embedding( max_features=max_tokens + 1, pretraining=self.pretraining).build(hp, output_node) output_node = basic.ConvBlock().build(hp, output_node) output_node = reduction.SpatialReduction().build(hp, output_node) output_node = basic.DenseBlock().build(hp, output_node) return output_node
def test_embedding_block(): utils.block_basic_exam( basic.Embedding(), tf.keras.Input(shape=(32,), dtype=tf.float32), [ 'pretraining', 'embedding_dim', ])