def __init__(self, output_dim=None, column_names=None, column_types=None, lookback=None, predict_from=1, predict_until=10, loss='mean_squared_error', metrics=None, name='time_series_forecaster', max_trials=100, directory=None, objective='val_loss', overwrite=True, seed=None): super().__init__(outputs=hypermodels.RegressionHead( output_dim=output_dim, loss=loss, metrics=metrics), column_names=column_names, column_types=column_types, lookback=lookback, predict_from=predict_from, predict_until=predict_until, name=name, max_trials=max_trials, directory=directory, objective=objective, tuner=greedy.Greedy, overwrite=overwrite, seed=seed) self.lookback = lookback self.predict_from = predict_from self.predict_until = predict_until
def __init__(self, column_names: Optional[List[str]] = None, column_types: Optional[Dict[str, str]] = None, output_dim: Optional[int] = None, loss: types.LossType = 'mean_squared_error', metrics: Optional[types.MetricsType] = None, project_name: str = 'structured_data_regressor', max_trials: int = 100, directory: Union[str, pathlib.Path, None] = None, objective: str = 'val_loss', overwrite: bool = True, seed: Optional[int] = None, **kwargs): super().__init__(outputs=hypermodels.RegressionHead( output_dim=output_dim, loss=loss, metrics=metrics), column_names=column_names, column_types=column_types, max_trials=max_trials, directory=directory, project_name=project_name, objective=objective, tuner=greedy.Greedy, overwrite=overwrite, seed=seed, **kwargs)
def __init__(self, output_dim=None, loss='mean_squared_error', metrics=None, name='text_regressor', max_trials=100, directory=None, objective='val_loss', overwrite=True, seed=None): super().__init__(outputs=hypermodels.RegressionHead( output_dim=output_dim, loss=loss, metrics=metrics), max_trials=max_trials, directory=directory, name=name, objective=objective, tuner=greedy.Greedy, overwrite=overwrite, seed=seed)
def __init__(self, output_dim: Optional[int] = None, loss: types.LossType = 'mean_squared_error', metrics: Optional[types.MetricsType] = None, name: str = 'image_regressor', max_trials: int = 100, directory: Union[str, Path, None] = None, objective: str = 'val_loss', overwrite: bool = True, seed: Optional[int] = None): super().__init__( outputs=hypermodels.RegressionHead(output_dim=output_dim, loss=loss, metrics=metrics), max_trials=max_trials, directory=directory, name=name, objective=objective, tuner=greedy.Greedy, overwrite=overwrite, seed=seed)