def get_hyper_preprocessors(self): hyper_preprocessors = [] if self._add_one_dimension: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor(preprocessors.AddOneDimension()) ) return hyper_preprocessors
def test_serialize_and_deserialize_default_hpps(): preprocessor = preprocessors.AddOneDimension() hyper_preprocessor = hyper_preprocessors.DefaultHyperPreprocessor(preprocessor) hyper_preprocessor = hyper_preprocessors.deserialize( hyper_preprocessors.serialize(hyper_preprocessor) ) assert isinstance(hyper_preprocessor.preprocessor, preprocessors.AddOneDimension)
def get_hyper_preprocessors(self): hyper_preprocessors = [] if self._add_one_dimension: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor( preprocessors.AddOneDimension())) if self.dtype in [tf.uint8, tf.uint16, tf.uint32, tf.uint64]: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor( preprocessors.CastToInt32())) if not self._encoded and self.dtype != tf.string: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor( preprocessors.CastToString())) if self.multi_label: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor( preprocessors.MultiLabelEncoder())) if not self._encoded: if self.num_classes == 2 and not self.multi_label: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor( preprocessors.LabelEncoder(self._labels))) else: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor( preprocessors.OneHotEncoder(self._labels))) return hyper_preprocessors
def get_hyper_preprocessors(self): hyper_preprocessors = [] if not self.has_channel_dim: hyper_preprocessors.append( hpps_module.DefaultHyperPreprocessor( preprocessors.AddOneDimension())) return hyper_preprocessors