def run(): x_train, y_train, x_test, y_test = load_images() #After loading train and evaluate classifier. clf = ImageClassifier(verbose=True, augment=False) clf.fit(x_train, y_train, time_limit=12 * 60 * 60) clf.final_fit(x_train, y_train, x_test, y_test, retrain=True) y = clf.evaluate(x_test, y_test) print(y * 100)
def run(): x_train, y_train, x_test, y_test = load_images() # After loading train and evaluate classifier. clf = ImageClassifier(verbose=True, augment=False) clf.fit(x_train, y_train, time_limit=12 * 60 * 60) clf.final_fit(x_train, y_train, x_test, y_test, retrain=True) y = clf.evaluate(x_test, y_test) print(y * 100)
from keras.datasets import mnist from autokeras import ImageClassifier import tensorflow if __name__ == '__main__': print(tensorflow.__version__) (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape + (1, )) x_test = x_test.reshape(x_test.shape + (1, )) clf = ImageClassifier(verbose=True, augment=False) clf.fit(x_train, y_train, time_limit=2 * 60) # clf.final_fit(x_train, y_train, x_test, y_test, retrain=True) y = clf.evaluate(x_test, y_test) print(y * 100)
plt.imshow(img,cmap='gray') plt.xticks([]) plt.yticks([]) plt.show() ''' if __name__ == '__main__': start = time.time() # 模型构建 model = ImageClassifier(verbose=True) # 搜索网络模型 model.fit(x_train, y_train, time_limit=1 * 60) # 验证最优模型 model.final_fit(x_train, y_train, x_train, y_train, retrain=True) # 给出评估结果 score = model.evaluate(x_train, y_train) # 识别结果 y_predict = model.predict(x_train) # y_pred = np.argmax(y_predict,axis=1) # 精确度 accuracy = accuracy_score(y_train, y_predict) # 打印出score与accuracy print('score:', score, ' accuracy:', accuracy) print(y_predict, y_train) model_dir = r'./trainer/new_auto_learn_Model.h5' model_img = r'./trainer/imgModel_ST.png' # 保存可视化模型 # model.load_searcher().load_best_model().produce_keras_model().save(model_dir) pickle_to_file(model, model_dir) # 加载模型
from autokeras import ImageClassifier from tensorflow.keras.datasets import fashion_mnist as fm (X_train, y_train), (X_test, y_test) = fm.load_data() X_train = X_train.astype('float32') / 255.0 X_test = X_test.astype('float32') / 255.0 EPOCHS = 10 classifier = ImageClassifier(seed=9, max_trials=10) classifier.fit(X_train, y_train, epochs=EPOCHS, verbose=2) print(classifier.evaluate(X_test, y_test))
from keras.datasets import mnist from autokeras import ImageClassifier if __name__ == '__main__': (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape + (1,)) x_test = x_test.reshape(x_test.shape + (1,)) clf = ImageClassifier(verbose=True, augment=False) clf.fit(x_train, y_train, time_limit=12 * 60 * 60) clf.final_fit(x_train, y_train, x_test, y_test, retrain=True) y = clf.evaluate(x_test, y_test) print(y * 100)
testX = np.array(testX, dtype="float16") / 255.0 trainY = np.array(trainY) testY = np.array(testY) print("[INFO] data matrix: {:.2f}MB".format(trainX.nbytes / (1024 * 1000.0))) print("[INFO] data shape : {}".format(trainX.shape)) print("[INFO] label shape : {}".format(trainY.shape)) # trainX = trainX.reshape(trainX.shape + (1,)) # testX = testX.reshape(testX.shape + (1,)) print(trainX.shape, trainY.shape, testX.shape, testY.shape) clf = ImageClassifier(path='autokeras_output/', verbose=True, augment=False) clf.fit(trainX, trainY, time_limit=12 * 60 * 60) clf.final_fit(trainX, trainY, testX, testY, retrain=True) y = clf.evaluate(testX, testY) print(y * 100) joblib.dump(clf, 'wfc3_autokeras_model.joblib.save') ''' from keras.datasets import mnist from autokeras import ImageClassifier if __name__ == '__main__': (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape + (1,)) x_test = x_test.reshape(x_test.shape + (1,)) clf = ImageClassifier(verbose=True, augment=False) clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
model.add(Dense(numclasses)) model.add(Activation('softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=["accuracy"]) #model.fit(X,y,batch_size=1,epochs=30, validation_split=0.1) return model #rock_classifier() """ clf = ImageClassifier(verbose=True, augment=False) clf.fit(X_train, y_train, time_limit=12 * 60 * 60) clf.final_fit(X_train, y_train, X_test, y_test, retrain=True) y = clf.evaluate(X_test, y_test) print(y * 100) #X.shape[0:] # ### CV accuracy """ from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import cross_val_score