Exemple #1
0
    def run_task(self, fw_spec):
        # Read data from fw_spec
        pipe_config_dict = fw_spec["pipe_config"]
        target = fw_spec["target"]
        data_file = fw_spec["data_file"]
        learner_name = pipe_config_dict["learner_name"]
        learner_kwargs = pipe_config_dict["learner_kwargs"]
        reducer_kwargs = pipe_config_dict["reducer_kwargs"]
        cleaner_kwargs = pipe_config_dict["cleaner_kwargs"]
        autofeaturizer_kwargs = pipe_config_dict["autofeaturizer_kwargs"]

        # Modify data_file based on computing resource
        data_dir = os.environ["AMM_DATASET_DIR"]
        data_file = os.path.join(data_dir, data_file)

        # Modify save_dir based on computing resource
        bench_dir = os.environ["AMM_SINGLE_FIT_DIR"]
        base_save_dir = fw_spec["base_save_dir"]
        base_save_dir = os.path.join(bench_dir, base_save_dir)

        if not os.path.exists(base_save_dir):
            os.makedirs(base_save_dir)

        # Set up pipeline config
        if learner_name == "TPOTAdaptor":
            learner = TPOTAdaptor(**learner_kwargs)
        elif learner_name == "rf":
            warnings.warn(
                "Learner kwargs passed into RF regressor/classifiers bc. rf being used."
            )
            learner = SinglePipelineAdaptor(
                regressor=RandomForestRegressor(**learner_kwargs),
                classifier=RandomForestClassifier(**learner_kwargs),
            )
        else:
            raise ValueError("{} not supported yet!" "".format(learner_name))
        pipe_config = {
            "learner": learner,
            "reducer": FeatureReducer(**reducer_kwargs),
            "cleaner": DataCleaner(**cleaner_kwargs),
            "autofeaturizer": AutoFeaturizer(**autofeaturizer_kwargs),
        }
        pipe = MatPipe(**pipe_config)

        # Set up dataset
        # Dataset should already be set up correctly as json beforehand.
        # this includes targets being converted to classification, removing
        # extra columns, having the names of featurization cols set to the
        # same as the matpipe config, etc.
        df = load_dataframe_from_json(data_file)

        pipe.fit(df, target)
        pipe.save(os.path.join(base_save_dir, "pipe.p"))
Exemple #2
0
def get_preset_config(preset: str = 'express', **powerups) -> dict:
    """
    Preset configs for MatPipe.

    USER:
    "******": Used for making production predictions and benchmarks.
        Balances accuracy and timeliness.
    "heavy" - When high accuracy is required, and you have access to
        (very) powerful computing resources. May be buggier and more difficult
        to run than production.
    "express" - Good for quick benchmarks with moderate accuracy.
    "express_single" - Same as express but uses XGB trees as single models
        instead of automl TPOT. Good for even more express results.

    DEBUG:
    "debug" - Debugging with automl enabled.
    "debug_single" - Debugging with a single model.

    Args:
        preset (str): The name of the preset config you'd like to use.
        **powerups: Various modifications as kwargs.
            cache_src (str): A file path. If specified, Autofeaturizer will use
                feature caching with a file stored at this location. See
                Autofeaturizer's cache_src argument for more information.
    Returns:
        (dict) The desired preset config.

    """
    caching_kwargs = {"cache_src": powerups.get("cache_src", None)}

    if preset == "production":
        production_config = {
            "learner": TPOTAdaptor(max_time_mins=720, max_eval_time_mins=20),
            "reducer": FeatureReducer(reducers=('pca', )),
            "autofeaturizer": AutoFeaturizer(preset="best", **caching_kwargs),
            "cleaner": DataCleaner()
        }
        return production_config
    elif preset == "heavy":
        heavy_config = {
            "learner": TPOTAdaptor(max_time_mins=1440),
            "reducer": FeatureReducer(reducers=("corr", "rebate")),
            "autofeaturizer": AutoFeaturizer(preset="all", **caching_kwargs),
            "cleaner": DataCleaner()
        }
        return heavy_config
    elif preset == "express":
        express_config = {
            "learner": TPOTAdaptor(max_time_mins=60, population_size=20),
            "reducer": FeatureReducer(reducers=('corr', )),
            "autofeaturizer": AutoFeaturizer(preset="fast", **caching_kwargs),
            "cleaner": DataCleaner()
        }
        return express_config
    elif preset == "express_single":
        xgb_kwargs = {"n_estimators": 300, "max_depth": 3, "n_jobs": -1}
        express_config = {
            "learner":
            SinglePipelineAdaptor(regressor=XGBRegressor(**xgb_kwargs),
                                  classifier=XGBClassifier(**xgb_kwargs)),
            "reducer":
            FeatureReducer(reducers=('corr', )),
            "autofeaturizer":
            AutoFeaturizer(preset="fast", **caching_kwargs),
            "cleaner":
            DataCleaner()
        }
        return express_config
    elif preset == "debug":
        debug_config = {
            "learner":
            TPOTAdaptor(max_time_mins=2,
                        max_eval_time_mins=1,
                        population_size=10),
            "reducer":
            FeatureReducer(reducers=('corr', 'tree')),
            "autofeaturizer":
            AutoFeaturizer(preset="fast", **caching_kwargs),
            "cleaner":
            DataCleaner()
        }
        return debug_config
    elif preset == "debug_single":
        rf_kwargs = {"n_estimators": 10, "n_jobs": -1}
        debug_single_config = {
            "learner":
            SinglePipelineAdaptor(
                classifier=RandomForestClassifier(**rf_kwargs),
                regressor=RandomForestRegressor(**rf_kwargs)),
            "reducer":
            FeatureReducer(reducers=('corr', )),
            "autofeaturizer":
            AutoFeaturizer(preset="fast", **caching_kwargs),
            "cleaner":
            DataCleaner()
        }
        return debug_single_config
    else:
        raise ValueError("{} unknown preset.".format(preset))
Exemple #3
0
def get_preset_config(preset: str = "express", **powerups) -> dict:
    """
    Preset configs for MatPipe.

    USER:
    "******" - Good for quick benchmarks with moderate accuracy.
    "express_single" - Same as express but uses XGB trees as single models
        instead of automl TPOT. Good for even more express results.
    "production": Used for making production predictions and benchmarks.
        Balances accuracy and timeliness.
    "heavy" - When high accuracy is required, and you have access to
        (very) powerful computing resources. May be buggier and more difficult
        to run than production.

    DEBUG:
    "debug" - Debugging with automl enabled.
    "debug_single" - Debugging with a single model.

    Args:
        preset (str): The name of the preset config you'd like to use.
        **powerups: Various modifications as kwargs.
            cache_src (str): A file path. If specified, Autofeaturizer will use
                feature caching with a file stored at this location. See
                Autofeaturizer's cache_src argument for more information.
            n_jobs (int): The number of parallel process to use when running.
                Particularly important for AutoFeaturixer and TPOTAdaptor.

    Returns:
        (dict) The desired preset config.
    """
    caching_kwargs = {"cache_src": powerups.get("cache_src", None)}
    n_jobs_kwargs = {"n_jobs": powerups.get("n_jobs", os.cpu_count())}

    if preset not in get_available_presets():
        raise ValueError("{} unknown preset.".format(preset))

    elif preset == "production":
        config = {
            "learner":
            TPOTAdaptor(max_time_mins=1440,
                        max_eval_time_mins=20,
                        **n_jobs_kwargs),
            "reducer":
            FeatureReducer(reducers=("corr", "tree"),
                           tree_importance_percentile=0.99),
            "autofeaturizer":
            AutoFeaturizer(preset="express", **caching_kwargs,
                           **n_jobs_kwargs),
            "cleaner":
            DataCleaner(),
        }
    elif preset == "heavy":
        config = {
            "learner":
            TPOTAdaptor(max_time_mins=2880, **n_jobs_kwargs),
            "reducer":
            FeatureReducer(reducers=("corr", "rebate")),
            "autofeaturizer":
            AutoFeaturizer(preset="heavy", **caching_kwargs, **n_jobs_kwargs),
            "cleaner":
            DataCleaner(),
        }
    elif preset == "express":
        config = {
            "learner":
            TPOTAdaptor(max_time_mins=60, population_size=20, **n_jobs_kwargs),
            "reducer":
            FeatureReducer(reducers=("corr", "tree"),
                           tree_importance_percentile=0.99),
            "autofeaturizer":
            AutoFeaturizer(preset="express", **caching_kwargs,
                           **n_jobs_kwargs),
            "cleaner":
            DataCleaner(),
        }
    elif preset == "express_single":
        xgb_kwargs = {
            "n_estimators": 300,
            "max_depth": 3,
            "n_jobs": n_jobs_kwargs
        }
        config = {
            "learner":
            SinglePipelineAdaptor(
                regressor=XGBRegressor(**xgb_kwargs),
                classifier=XGBClassifier(**xgb_kwargs),
            ),
            "reducer":
            FeatureReducer(reducers=("corr", )),
            "autofeaturizer":
            AutoFeaturizer(preset="express", **caching_kwargs,
                           **n_jobs_kwargs),
            "cleaner":
            DataCleaner(),
        }
    elif preset == "debug":
        if "n_jobs" not in powerups:
            n_jobs_kwargs["n_jobs"] = 2

        config = {
            "learner":
            TPOTAdaptor(max_time_mins=1,
                        max_eval_time_mins=1,
                        population_size=10,
                        **n_jobs_kwargs),
            "reducer":
            FeatureReducer(reducers=("corr", "tree")),
            "autofeaturizer":
            AutoFeaturizer(preset="debug", **caching_kwargs, **n_jobs_kwargs),
            "cleaner":
            DataCleaner(),
        }
    elif preset == "debug_single":
        rf_kwargs = {"n_estimators": 10, "n_jobs": n_jobs_kwargs["n_jobs"]}
        config = {
            "learner":
            SinglePipelineAdaptor(
                classifier=RandomForestClassifier(**rf_kwargs),
                regressor=RandomForestRegressor(**rf_kwargs),
            ),
            "reducer":
            FeatureReducer(reducers=("corr", )),
            "autofeaturizer":
            AutoFeaturizer(preset="debug", **caching_kwargs, **n_jobs_kwargs),
            "cleaner":
            DataCleaner(),
        }
    return config
                                       sum(r2_scores) / len(r2_scores)))

    sleep(1)

# COMPARE TO MATBENCH
df = load_tehrani_superhard_mat(data="basic_descriptors")

df = df.drop(["formula", "material_id", "shear_modulus", "initial_structure"],
             axis=1)
traindf = df.iloc[:floor(.8 * len(df))]
testdf = df.iloc[floor(.8 * len(df)):]
target = "bulk_modulus"

# Get top-level transformers
autofeater = AutoFeaturizer()
cleaner = DataCleaner()
reducer = FeatureReducer()
learner = TPOTAdaptor("regression", max_time_mins=5)

# Fit transformers on training data
traindf = autofeater.fit_transform(traindf, target)
traindf = cleaner.fit_transform(traindf, target)
traindf = reducer.fit_transform(traindf, target)
learner.fit(traindf, target)

# Apply the same transformations to the testing data
testdf = autofeater.transform(testdf, target)
testdf = cleaner.transform(testdf, target)
testdf = reducer.transform(testdf, target)
testdf = learner.predict(testdf, target)  #predict validation data
print(testdf)
Exemple #5
0
    def run_task(self, fw_spec):
        # Read data from fw_spec
        pipe_config_dict = fw_spec["pipe_config"]
        fold = fw_spec["fold"]
        kfold_config = fw_spec["kfold_config"]
        target = fw_spec["target"]
        data_pickle = fw_spec["data_pickle"]
        clf_pos_label = fw_spec["clf_pos_label"]
        problem_type = fw_spec["problem_type"]
        learner_name = pipe_config_dict["learner_name"]
        cache = fw_spec["cache"]
        learner_kwargs = pipe_config_dict["learner_kwargs"]
        reducer_kwargs = pipe_config_dict["reducer_kwargs"]
        cleaner_kwargs = pipe_config_dict["cleaner_kwargs"]
        autofeaturizer_kwargs = pipe_config_dict["autofeaturizer_kwargs"]

        # Modify data_pickle based on computing resource
        data_dir = os.environ['AMM_DATASET_DIR']
        data_file = os.path.join(data_dir, data_pickle)

        # Modify save_dir based on computing resource
        bench_dir = os.environ['AMM_BENCH_DIR']
        base_save_dir = fw_spec["base_save_dir"]
        base_save_dir = os.path.join(bench_dir, base_save_dir)
        save_dir = fw_spec.pop("save_dir")
        save_dir = os.path.join(base_save_dir, save_dir)

        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        from multiprocessing import cpu_count
        ont = os.environ.get("OMP_NUM_THREADS", None)
        print("Number of omp threads: {}".format(ont))
        print("Number of cpus: {}".format(cpu_count()))
        # n_jobs = int(cpu_count()/2)
        # print("Setting number of featurization jobs to: {}".format(n_jobs))
        # autofeaturizer_kwargs["n_jobs"] = n_jobs
        # learner_kwargs["verbosity"] = 3

        # Set up pipeline config
        if learner_name == "TPOTAdaptor":
            learner = TPOTAdaptor(**learner_kwargs)
        elif learner_name == "rf":
            warnings.warn(
                "Learner kwargs passed into RF regressor/classifiers bc. rf being used."
            )
            learner = SinglePipelineAdaptor(
                regressor=RandomForestRegressor(**learner_kwargs),
                classifier=RandomForestClassifier(**learner_kwargs))
        else:
            raise ValueError("{} not supported by RunPipe yet!"
                             "".format(learner_name))
        if cache:
            autofeaturizer_kwargs["cache_src"] = os.path.join(
                base_save_dir, "features.json")
        pipe_config = {
            "learner": learner,
            "reducer": FeatureReducer(**reducer_kwargs),
            "cleaner": DataCleaner(**cleaner_kwargs),
            "autofeaturizer": AutoFeaturizer(**autofeaturizer_kwargs)
        }

        logger = initialize_logger(AMM_LOGGER_BASENAME, filepath=save_dir)
        pipe = MatPipe(**pipe_config, logger=logger)

        # Set up dataset
        # Dataset should already be set up correctly as pickle beforehand.
        # this includes targets being converted to classification, removing
        # extra columns, having the names of featurization cols set to the
        # same as the matpipe config, etc.
        df = pd.read_pickle(data_file)

        # Check other parameters that would otherwise not be checked until after
        # benchmarking, hopefully saves some errors at the end during scoring.
        if problem_type not in [AMM_CLF_NAME, AMM_REG_NAME]:
            raise ValueError("Problem must be either classification or "
                             "regression.")
        elif problem_type == AMM_CLF_NAME:
            if not isinstance(clf_pos_label, (str, bool)):
                raise TypeError(
                    "The classification positive label should be a "
                    "string, or bool not {}."
                    "".format(type(clf_pos_label)))
            elif clf_pos_label not in df[target]:
                raise ValueError("The classification positive label should be"
                                 "present in the target column.")
            elif len(df[target].unique()) > 2:
                raise ValueError("Only binary classification scoring available"
                                 "at this time.")

        # Set up testing scheme
        if problem_type == AMM_REG_NAME:
            kfold = KFold(**kfold_config)
        else:
            kfold = StratifiedKFold(**kfold_config)
        if fold >= kfold.n_splits:
            raise ValueError("{} is out of range for KFold with n_splits="
                             "{}".format(fold, kfold))

        # Run the benchmark
        t1 = time.time()
        results = pipe.benchmark(df,
                                 target,
                                 kfold,
                                 fold_subset=[fold],
                                 cache=True)
        result_df = results[0]
        elapsed_time = time.time() - t1

        # Save everything
        pipe.save(os.path.join(save_dir, "pipe.p"))
        pipe.digest(os.path.join(save_dir, "digest.txt"))
        result_df.to_csv(os.path.join(save_dir, "test_df.csv"))
        pipe.post_fit_df.to_csv(os.path.join(save_dir, "fitted_df.csv"))

        # Evaluate model
        true = result_df[target]
        test = result_df[target + " predicted"]

        pass_to_storage = {}
        if problem_type == AMM_REG_NAME:
            pass_to_storage["r2"] = r2_score(true, test)
            pass_to_storage["mae"] = mean_absolute_error(true, test)
            pass_to_storage['rmse'] = sqrt(mean_squared_error(true, test))
        elif problem_type == AMM_CLF_NAME:
            pass_to_storage["f1"] = f1_score(true,
                                             test,
                                             pos_label=clf_pos_label)
            pass_to_storage["roc_auc"] = roc_auc_score(true, test)
            pass_to_storage["accuracy"] = accuracy_score(true, test)
        else:
            raise ValueError("Scoring method for problem type {} not supported"
                             "".format(problem_type))

        # Extract important details for storage
        try:
            # TPOT Adaptor
            best_pipeline = [
                str(step) for step in pipe.learner.best_pipeline.steps
            ]
        except AttributeError:
            best_pipeline = str(pipe.learner.best_pipeline)

        features = pipe.learner.features
        n_features = len(features)
        fold_orig = list(kfold.split(df, y=df[target]))[fold]
        n_samples_train_original = len(fold_orig[0])
        n_samples_test_original = len(fold_orig[1])

        pass_to_storage.update({
            "target": target,
            "best_pipeline": best_pipeline,
            "elapsed_time": elapsed_time,
            "features": features,
            "n_features": n_features,
            "n_test_samples_original": n_samples_test_original,
            "n_train_samples_original": n_samples_train_original,
            "n_train_samples": len(pipe.post_fit_df),
            "n_test_samples": len(test),
            "test_sample_frac_retained": len(test) / n_samples_test_original,
            "completion_time": datetime.datetime.now(),
            "base_save_dir": base_save_dir,
            "save_dir": save_dir
        })
        fw_spec.update(pass_to_storage)
import numpy as np

from automatminer.base import LoggableMixin, DataframeTransformer
from automatminer.featurization import AutoFeaturizer
from automatminer.preprocessing import DataCleaner, FeatureReducer
from automatminer.automl.adaptors import TPOTAdaptor
from automatminer.utils.ml_tools import regression_or_classification
from automatminer.utils.package_tools import check_fitted, set_fitted, \
    return_attrs_recursively

performance_config = {}
default_config = {
    "learner": TPOTAdaptor(max_time_mins=120),
    "reducer": FeatureReducer(),
    "autofeaturizer": AutoFeaturizer(),
    "cleaner": DataCleaner()
}
fast_config = {
    "learner": TPOTAdaptor(max_time_mins=30, population_size=50),
    "reducer": FeatureReducer(reducers=('corr', 'tree')),
    "autofeaturizer": AutoFeaturizer(),
    "cleaner": DataCleaner()
}
debug_config = {
    "learner": TPOTAdaptor(max_time_mins=1, population_size=10),
    "reducer": FeatureReducer(reducers=('corr', )),
    "autofeaturizer": AutoFeaturizer(),
    "cleaner": DataCleaner()
}

Exemple #7
0
from matbench.bench import MatbenchBenchmark

# The learner is a single 500-estimator Random Forest model
learner = SinglePipelineAdaptor(
    regressor=RandomForestRegressor(n_estimators=500),
    classifier=RandomForestClassifier(n_estimators=500),
)
pipe_config = {
    "learner":
    learner,
    "reducer":
    FeatureReducer(reducers=[]),
    "cleaner":
    DataCleaner(feature_na_method="mean",
                max_na_frac=0.01,
                na_method_fit="drop",
                na_method_transform="mean"),
    "autofeaturizer":
    AutoFeaturizer(n_jobs=10, preset="debug"),
}

pipe = MatPipe(**pipe_config)

mb = MatbenchBenchmark(autoload=False)

for task in mb.tasks:
    task.load()
    for fold in task.folds:

        df_train = task.get_train_and_val_data(fold, as_type="df")
import numpy as np

from automatminer.base import LoggableMixin, DataframeTransformer
from automatminer.featurization import AutoFeaturizer
from automatminer.preprocessing import DataCleaner, FeatureReducer
from automatminer.automl.adaptors import TPOTAdaptor
from automatminer.utils.ml_tools import regression_or_classification
from automatminer.utils.package_tools import check_fitted, set_fitted, \
    return_attrs_recursively


performance_config = {}
default_config = {"learner": TPOTAdaptor(max_time_mins=120),
                  "reducer": FeatureReducer(),
                  "autofeaturizer": AutoFeaturizer(),
                  "cleaner": DataCleaner()}
fast_config = {"learner": TPOTAdaptor(max_time_mins=30, population_size=50),
               "reducer": FeatureReducer(reducers=('corr', 'tree')),
               "autofeaturizer": AutoFeaturizer(),
               "cleaner": DataCleaner()}
debug_config = {"learner": TPOTAdaptor(max_time_mins=1, population_size=10),
                "reducer": FeatureReducer(reducers=('corr',)),
                "autofeaturizer": AutoFeaturizer(),
                "cleaner": DataCleaner()}


class MatPipe(DataframeTransformer, LoggableMixin):
    """
    Establish an ML pipeline for transforming compositions, structures,
    bandstructures, and DOS objects into machine-learned properties.