def test_automl_default_classification(): for data_id in [ 179, 4135, ]: dataset = fetch_openml(data_id=data_id, as_frame=True) dataset.target = dataset.target.astype('category').cat.codes if len(dataset.data) < 2000: crop = len(dataset.data) else: crop = 2000 X_train, X_test, y_train, y_test = train_test_split( dataset.data[:crop], dataset.target[:crop], test_size=0.2, random_state=RANDOM_SEED, ) model = AutoMLClassifier(random_state=RANDOM_SEED, ) model.fit(X_train, y_train, timeout=600) predicts = model.predict(X_test) score = round(sklearn.metrics.roc_auc_score(y_test, predicts), 4) assert score is not None assert 0.5 < score <= 1 model.save('AutoML_model_1', folder=TMP_FOLDER) model_new = AutoMLClassifier(random_state=RANDOM_SEED, ) model_new = model_new.load('AutoML_model_1', folder=TMP_FOLDER) predicts = model_new.predict(X_test) score2 = round(sklearn.metrics.roc_auc_score(y_test, predicts), 4) assert score2 is not None assert 0.5 < score2 <= 1 assert (score - score2) == 0.
def load_model(model_name, folder): model = AutoMLClassifier() model = model.load(model_name, folder=folder) return(model)