def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x,train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Provide the training input dataset. train_input_fn = automobile_data.make_dataset(args.batch_size, train_x, train_y, True, 1000) # Provide the validation input dataset. test_input_fn = automobile_data.make_dataset(args.batch_size, test_x, test_y) # Use the same categorical columns as in `linear_regression_categorical` body_style_vocab = ["hardtop", "wagon", "sedan", "hatchback", "convertible"] body_style_column = tf.feature_column.categorical_column_with_vocabulary_list( key="body-style", vocabulary_list=body_style_vocab) make_column = tf.feature_column.categorical_column_with_hash_bucket( key="make", hash_bucket_size=50) feature_columns = [ tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), # Since this is a DNN model, categorical columns must be converted from # sparse to dense. # Wrap them in an `indicator_column` to create a # one-hot vector from the input. tf.feature_column.indicator_column(body_style_column), # Or use an `embedding_column` to create a trainable vector for each # index. tf.feature_column.embedding_column(make_column, dimension=3), ] # Build a DNNRegressor, with 2x20-unit hidden layers, with the feature columns # defined above as input. model = tf.estimator.DNNRegressor( hidden_units=[20, 20], feature_columns=feature_columns) # Train the model. # By default, the Estimators log output every 100 steps. model.train(input_fn=train_input_fn, steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=test_input_fn) # The evaluation returns a Python dictionary. The "average_loss" key holds the # Mean Squared Error (MSE). average_loss = eval_result["average_loss"] # Convert MSE to Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}" .format(args.price_norm_factor * average_loss**0.5)) print()
def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x, train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Provide the training input dataset. train_input_fn = automobile_data.make_dataset(args.batch_size, train_x, train_y, True, 1000) # Provide the validation input dataset. test_input_fn = automobile_data.make_dataset(args.batch_size, test_x, test_y) # Use the same categorical columns as in `linear_regression_categorical` body_style_vocab = [ "hardtop", "wagon", "sedan", "hatchback", "convertible" ] body_style_column = tf.feature_column.categorical_column_with_vocabulary_list( key="body-style", vocabulary_list=body_style_vocab) make_column = tf.feature_column.categorical_column_with_hash_bucket( key="make", hash_bucket_size=50) feature_columns = [ tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), # Since this is a DNN model, categorical columns must be converted from sparse to dense. # Wrap them in an `indicator_column` to create a one-hot vector from the input. tf.feature_column.indicator_column(body_style_column), # Or use an `embedding_column` to create a trainable vector for each index. tf.feature_column.embedding_column(make_column, dimension=3), ] # Build a DNNRegressor, with 2x20-unit hidden layers, with the feature columns defined above as input. model = tf.estimator.DNNRegressor(hidden_units=[20, 20], feature_columns=feature_columns) # Train the model. # By default, the Estimators log output every 100 steps. model.train(input_fn=train_input_fn, steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=test_input_fn) # The evaluation returns a Python dictionary. The "average_loss" key holds the Mean Squared Error (MSE). average_loss = eval_result["average_loss"] # Convert MSE to Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}".format( args.price_norm_factor * average_loss**0.5)) print()
def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x,train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Build the training dataset. train = ( automobile_data.make_dataset(train_x, train_y) # Shuffling with a buffer larger than the data set ensures # that the examples are well mixed. .shuffle(1000).batch(args.batch_size) # Repeat forever .repeat()) # Build the validation dataset. test = automobile_data.make_dataset(test_x, test_y).batch(args.batch_size) # The following code demonstrates two of the ways that `feature_columns` can # be used to build a model with categorical inputs. # The first way assigns a unique weight to each category. To do this, you must # specify the category's vocabulary (values outside this specification will # receive a weight of zero). # Alternatively, you can define the vocabulary in a file (by calling # `categorical_column_with_vocabulary_file`) or as a range of positive # integers (by calling `categorical_column_with_identity`) body_style_vocab = ["hardtop", "wagon", "sedan", "hatchback", "convertible"] body_style_column = tf.feature_column.categorical_column_with_vocabulary_list( key="body-style", vocabulary_list=body_style_vocab) # The second way, appropriate for an unspecified vocabulary, is to create a # hashed column. It will create a fixed length list of weights, and # automatically assign each input category to a weight. Due to the # pseudo-randomness of the process, some weights may be shared between # categories, while others will remain unused. make_column = tf.feature_column.categorical_column_with_hash_bucket( key="make", hash_bucket_size=50) feature_columns = [ # This model uses the same two numeric features as `linear_regressor.py` tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), # This model adds two categorical colums that will adjust the price based # on "make" and "body-style". body_style_column, make_column, ] # Build the Estimator. model = tf.estimator.LinearRegressor(feature_columns=feature_columns) # Train the model. # By default, the Estimators log output every 100 steps. model.train(input_fn=from_dataset(train), steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=from_dataset(test)) # The evaluation returns a Python dictionary. The "average_loss" key holds the # Mean Squared Error (MSE). average_loss = eval_result["average_loss"] # Convert MSE to Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}" .format(args.price_norm_factor * average_loss**0.5)) print()
def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x, train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Provide the training input dataset. train_input_fn = automobile_data.make_dataset(args.batch_size, train_x, train_y, True, 1000) # Provide the validation input dataset. test_input_fn = automobile_data.make_dataset(args.batch_size, test_x, test_y) feature_columns = [ # "curb-weight" and "highway-mpg" are numeric columns. tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), ] # Build the Estimator. model = tf.estimator.LinearRegressor(feature_columns=feature_columns) # Train the model. # By default, the Estimators log output every 100 steps. model.train(input_fn=train_input_fn, steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=test_input_fn) # The evaluation returns a Python dictionary. The "average_loss" key holds the # Mean Squared Error (MSE). average_loss = eval_result["average_loss"] # Convert MSE to Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}".format( args.price_norm_factor * average_loss**0.5)) # Run the model in prediction mode. input_dict = { "curb-weight": np.array([2000, 3000]), "highway-mpg": np.array([30, 40]) } # Provide the predict input dataset. predict_input_fn = automobile_data.make_dataset(1, input_dict) predict_results = model.predict(input_fn=predict_input_fn) # Print the prediction results. print("\nPrediction results:") for i, prediction in enumerate(predict_results): msg = ("Curb weight: {: 4d}lbs, " "Highway: {: 0d}mpg, " "Prediction: ${: 9.2f}") msg = msg.format(input_dict["curb-weight"][i], input_dict["highway-mpg"][i], args.price_norm_factor * prediction["predictions"][0]) print(" " + msg) print()
def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x,train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Provide the training input dataset. train_input_fn = automobile_data.make_dataset(args.batch_size, train_x, train_y, True, 1000) # Provide the validation input dataset. test_input_fn = automobile_data.make_dataset(args.batch_size, test_x, test_y) feature_columns = [ # "curb-weight" and "highway-mpg" are numeric columns. tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), ] # Build the Estimator. model = tf.estimator.LinearRegressor(feature_columns=feature_columns) # Train the model. # By default, the Estimators log output every 100 steps. model.train(input_fn=train_input_fn, steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=test_input_fn) # The evaluation returns a Python dictionary. The "average_loss" key holds the # Mean Squared Error (MSE). average_loss = eval_result["average_loss"] # Convert MSE to Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}" .format(args.price_norm_factor * average_loss**0.5)) # Run the model in prediction mode. input_dict = { "curb-weight": np.array([2000, 3000]), "highway-mpg": np.array([30, 40]) } # Provide the predict input dataset. predict_input_fn = automobile_data.make_dataset(1, input_dict) predict_results = model.predict(input_fn=predict_input_fn) # Print the prediction results. print("\nPrediction results:") for i, prediction in enumerate(predict_results): msg = ("Curb weight: {: 4d}lbs, " "Highway: {: 0d}mpg, " "Prediction: ${: 9.2f}") msg = msg.format(input_dict["curb-weight"][i], input_dict["highway-mpg"][i], args.price_norm_factor * prediction["predictions"][0]) print(" " + msg) print()
def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x, train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Provide the training input dataset. train_input_fn = automobile_data.make_dataset(args.batch_size, train_x, train_y, True, 1000) # Build the validation dataset. test_input_fn = automobile_data.make_dataset(args.batch_size, test_x, test_y) # The first way assigns a unique weight to each category. To do this you must # specify the category's vocabulary (values outside this specification will # receive a weight of zero). Here we specify the vocabulary using a list of # options. The vocabulary can also be specified with a vocabulary file (using # `categorical_column_with_vocabulary_file`). For features covering a # range of positive integers use `categorical_column_with_identity`. body_style_vocab = [ "hardtop", "wagon", "sedan", "hatchback", "convertible" ] body_style = tf.feature_column.categorical_column_with_vocabulary_list( key="body-style", vocabulary_list=body_style_vocab) make = tf.feature_column.categorical_column_with_hash_bucket( key="make", hash_bucket_size=50) feature_columns = [ tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), # Since this is a DNN model, convert categorical columns from sparse # to dense. # Wrap them in an `indicator_column` to create a # one-hot vector from the input. tf.feature_column.indicator_column(body_style), # Or use an `embedding_column` to create a trainable vector for each # index. tf.feature_column.embedding_column(make, dimension=3), ] # Build a custom Estimator, using the model_fn. # `params` is passed through to the `model_fn`. model = tf.estimator.Estimator(model_fn=my_dnn_regression_fn, params={ "feature_columns": feature_columns, "learning_rate": 0.001, "optimizer": tf.train.AdamOptimizer, "hidden_units": [20, 20] }) # Train the model. model.train(input_fn=train_input_fn, steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=test_input_fn) # Print the Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}".format( args.price_norm_factor * eval_result["rmse"])) print()
def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x,train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Build the training dataset. train = ( automobile_data.make_dataset(train_x, train_y) # Shuffling with a buffer larger than the data set ensures # that the examples are well mixed. .shuffle(1000).batch(args.batch_size) # Repeat forever .repeat()) # Build the validation dataset. test = automobile_data.make_dataset(test_x, test_y).batch(args.batch_size) # The first way assigns a unique weight to each category. To do this you must # specify the category's vocabulary (values outside this specification will # receive a weight of zero). Here we specify the vocabulary using a list of # options. The vocabulary can also be specified with a vocabulary file (using # `categorical_column_with_vocabulary_file`). For features covering a # range of positive integers use `categorical_column_with_identity`. body_style_vocab = ["hardtop", "wagon", "sedan", "hatchback", "convertible"] body_style = tf.feature_column.categorical_column_with_vocabulary_list( key="body-style", vocabulary_list=body_style_vocab) make = tf.feature_column.categorical_column_with_hash_bucket( key="make", hash_bucket_size=50) feature_columns = [ tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), # Since this is a DNN model, convert categorical columns from sparse # to dense. # Wrap them in an `indicator_column` to create a # one-hot vector from the input. tf.feature_column.indicator_column(body_style), # Or use an `embedding_column` to create a trainable vector for each # index. tf.feature_column.embedding_column(make, dimension=3), ] # Build a custom Estimator, using the model_fn. # `params` is passed through to the `model_fn`. model = tf.estimator.Estimator( model_fn=my_dnn_regression_fn, params={ "feature_columns": feature_columns, "learning_rate": 0.001, "optimizer": tf.train.AdamOptimizer, "hidden_units": [20, 20] }) # Train the model. model.train(input_fn=from_dataset(train), steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=from_dataset(test)) # Print the Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}" .format(args.price_norm_factor * eval_result["rmse"])) print()