def test_io(): """Test IO functionality.""" event_id = None tmin, tmax = -0.2, 0.5 events = mne.find_events(raw) savedir = _TempDir() fname = op.join(savedir, 'autoreject.hdf5') include = [u'EEG %03d' % i for i in range(1, 45, 3)] picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True, include=include, exclude=[]) # raise error if preload is false epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=4, reject=None, preload=True)[:10] ar = AutoReject(cv=2, random_state=42, n_interpolate=[1], consensus=[0.5], verbose=False) ar.save(fname) # save without fitting # check that fit after saving is the same as fit # without saving ar2 = read_auto_reject(fname) ar.fit(epochs) ar2.fit(epochs) assert np.sum([ar.threshes_[k] - ar2.threshes_[k] for k in ar.threshes_.keys()]) == 0. pytest.raises(ValueError, ar.save, fname) ar.save(fname, overwrite=True) ar3 = read_auto_reject(fname) epochs_clean1, reject_log1 = ar.transform(epochs, return_log=True) epochs_clean2, reject_log2 = ar3.transform(epochs, return_log=True) assert_array_equal(epochs_clean1.get_data(), epochs_clean2.get_data()) assert_array_equal(reject_log1.labels, reject_log2.labels)
def main(): ################################################# ## SETUP ## Get list of subject files subj_files = listdir(DAT_PATH) subj_files = [file for file in subj_files if EXT.lower() in file.lower()] ## Set up FOOOF Objects # Initialize FOOOF settings & objects objects fooof_settings = FOOOFSettings(peak_width_limits=PEAK_WIDTH_LIMITS, max_n_peaks=MAX_N_PEAKS, min_peak_amplitude=MIN_PEAK_AMP, peak_threshold=PEAK_THRESHOLD, aperiodic_mode=APERIODIC_MODE) fm = FOOOF(*fooof_settings, verbose=False) fg = FOOOFGroup(*fooof_settings, verbose=False) # Save out a settings file fg.save('0-FOOOF_Settings', pjoin(RES_PATH, 'FOOOF'), save_settings=True) # Set up the dictionary to store all the FOOOF results fg_dict = dict() for load_label in LOAD_LABELS: fg_dict[load_label] = dict() for side_label in SIDE_LABELS: fg_dict[load_label][side_label] = dict() for seg_label in SEG_LABELS: fg_dict[load_label][side_label][seg_label] = [] ## Initialize group level data stores n_subjs, n_conds, n_times = len(subj_files), 3, N_TIMES group_fooofed_alpha_freqs = np.zeros(shape=[n_subjs]) dropped_components = np.ones(shape=[n_subjs, 50]) * 999 dropped_trials = np.ones(shape=[n_subjs, 1500]) * 999 canonical_group_avg_dat = np.zeros(shape=[n_subjs, n_conds, n_times]) fooofed_group_avg_dat = np.zeros(shape=[n_subjs, n_conds, n_times]) # Set channel types ch_types = {'LHor' : 'eog', 'RHor' : 'eog', 'IVer' : 'eog', 'SVer' : 'eog', 'LMas' : 'misc', 'RMas' : 'misc', 'Nose' : 'misc', 'EXG8' : 'misc'} ################################################# ## RUN ACROSS ALL SUBJECTS # Run analysis across each subject for s_ind, subj_file in enumerate(subj_files): # Get subject label and print status subj_label = subj_file.split('.')[0] print('\nCURRENTLY RUNNING SUBJECT: ', subj_label, '\n') ################################################# ## LOAD / ORGANIZE / SET-UP DATA # Load subject of data, apply apply fixes for channels, etc eeg_dat = mne.io.read_raw_edf(pjoin(DAT_PATH, subj_file), preload=True, verbose=False) # Fix channel name labels eeg_dat.info['ch_names'] = [chl[2:] for chl in \ eeg_dat.ch_names[:-1]] + [eeg_dat.ch_names[-1]] for ind, chi in enumerate(eeg_dat.info['chs']): eeg_dat.info['chs'][ind]['ch_name'] = eeg_dat.info['ch_names'][ind] # Update channel types eeg_dat.set_channel_types(ch_types) # Set reference - average reference eeg_dat = eeg_dat.set_eeg_reference(ref_channels='average', projection=False, verbose=False) # Set channel montage chs = mne.channels.read_montage('standard_1020', eeg_dat.ch_names) eeg_dat.set_montage(chs) # Get event information & check all used event codes evs = mne.find_events(eeg_dat, shortest_event=1, verbose=False) # Pull out sampling rate srate = eeg_dat.info['sfreq'] ################################################# ## Pre-Processing: ICA # High-pass filter data for running ICA eeg_dat.filter(l_freq=1., h_freq=None, fir_design='firwin') if RUN_ICA: print("\nICA: CALCULATING SOLUTION\n") # ICA settings method = 'fastica' n_components = 0.99 random_state = 47 reject = {'eeg': 20e-4} # Initialize ICA object ica = ICA(n_components=n_components, method=method, random_state=random_state) # Fit ICA ica.fit(eeg_dat, reject=reject) # Save out ICA solution ica.save(pjoin(RES_PATH, 'ICA', subj_label + '-ica.fif')) # Otherwise: load previously saved ICA to apply else: print("\nICA: USING PRECOMPUTED\n") ica = read_ica(pjoin(RES_PATH, 'ICA', subj_label + '-ica.fif')) # Find components to drop, based on correlation with EOG channels drop_inds = [] for chi in EOG_CHS: inds, _ = ica.find_bads_eog(eeg_dat, ch_name=chi, threshold=2.5, l_freq=1, h_freq=10, verbose=False) drop_inds.extend(inds) drop_inds = list(set(drop_inds)) # Set which components to drop, and collect record of this ica.exclude = drop_inds dropped_components[s_ind, 0:len(drop_inds)] = drop_inds # Apply ICA to data eeg_dat = ica.apply(eeg_dat) ################################################# ## SORT OUT EVENT CODES # Extract a list of all the event labels all_trials = [it for it2 in EV_DICT.values() for it in it2] # Create list of new event codes to be used to label correct trials (300s) all_trials_new = [it + 100 for it in all_trials] # This is an annoying way to collapse across the doubled event markers from above all_trials_new = [it - 1 if not ind%2 == 0 else it for ind, it in enumerate(all_trials_new)] # Get labelled dictionary of new event names ev_dict2 = {k:v for k, v in zip(EV_DICT.keys(), set(all_trials_new))} # Initialize variables to store new event definitions evs2 = np.empty(shape=[0, 3], dtype='int64') lags = np.array([]) # Loop through, creating new events for all correct trials t_min, t_max = -0.4, 3.0 for ref_id, targ_id, new_id in zip(all_trials, CORR_CODES * 6, all_trials_new): t_evs, t_lags = mne.event.define_target_events(evs, ref_id, targ_id, srate, t_min, t_max, new_id) if len(t_evs) > 0: evs2 = np.vstack([evs2, t_evs]) lags = np.concatenate([lags, t_lags]) ################################################# ## FOOOF # Set channel of interest ch_ind = eeg_dat.ch_names.index(CHL) # Calculate PSDs over ~ first 2 minutes of data, for specified channel fmin, fmax = 1, 50 tmin, tmax = 5, 125 psds, freqs = mne.time_frequency.psd_welch(eeg_dat, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, n_fft=int(2*srate), n_overlap=int(srate), n_per_seg=int(2*srate), verbose=False) # Fit FOOOF across all channels fg.fit(freqs, psds, FREQ_RANGE, n_jobs=-1) # Save out FOOOF results fg.save(subj_label + '_fooof', pjoin(RES_PATH, 'FOOOF'), save_results=True) # Extract individualized CF from specified channel, add to group collection fm = fg.get_fooof(ch_ind, False) fooof_freq, _, _ = get_band_peak(fm.peak_params_, [7, 14]) group_fooofed_alpha_freqs[s_ind] = fooof_freq # If not FOOOF alpha extracted, reset to 10 if np.isnan(fooof_freq): fooof_freq = 10 ################################################# ## ALPHA FILTERING # CANONICAL: Filter data to canonical alpha band: 8-12 Hz alpha_dat = eeg_dat.copy() alpha_dat.filter(8, 12, fir_design='firwin', verbose=False) alpha_dat.apply_hilbert(envelope=True, verbose=False) # FOOOF: Filter data to FOOOF derived alpha band fooof_dat = eeg_dat.copy() fooof_dat.filter(fooof_freq-2, fooof_freq+2, fir_design='firwin') fooof_dat.apply_hilbert(envelope=True) ################################################# ## EPOCH TRIALS # Set epoch timings tmin, tmax = -0.85, 1.1 # Epoch trials - raw data for trial rejection epochs = mne.Epochs(eeg_dat, evs2, ev_dict2, tmin=tmin, tmax=tmax, baseline=None, preload=True, verbose=False) # Epoch trials - filtered version epochs_alpha = mne.Epochs(alpha_dat, evs2, ev_dict2, tmin=tmin, tmax=tmax, baseline=(-0.5, -0.35), preload=True, verbose=False) epochs_fooof = mne.Epochs(fooof_dat, evs2, ev_dict2, tmin=tmin, tmax=tmax, baseline=(-0.5, -0.35), preload=True, verbose=False) ################################################# ## PRE-PROCESSING: AUTO-REJECT if RUN_AUTOREJECT: print('\nAUTOREJECT: CALCULATING SOLUTION\n') # Initialize and run autoreject across epochs ar = AutoReject(n_jobs=4, verbose=False) ar.fit(epochs) # Save out AR solution ar.save(pjoin(RES_PATH, 'AR', subj_label + '-ar.hdf5'), overwrite=True) # Otherwise: load & apply previously saved AR solution else: print('\nAUTOREJECT: USING PRECOMPUTED\n') ar = read_auto_reject(pjoin(RES_PATH, 'AR', subj_label + '-ar.hdf5')) ar.verbose = 'tqdm' # Apply autoreject to the original epochs object it was learnt on epochs, rej_log = ar.transform(epochs, return_log=True) # Apply autoreject to the copies of the data - apply interpolation, then drop same epochs _apply_interp(rej_log, epochs_alpha, ar.threshes_, ar.picks_, ar.verbose) epochs_alpha.drop(rej_log.bad_epochs) _apply_interp(rej_log, epochs_fooof, ar.threshes_, ar.picks_, ar.verbose) epochs_fooof.drop(rej_log.bad_epochs) # Collect which epochs were dropped dropped_trials[s_ind, 0:sum(rej_log.bad_epochs)] = np.where(rej_log.bad_epochs)[0] ################################################# ## SET UP CHANNEL CLUSTERS # Set channel clusters - take channels contralateral to stimulus presentation # Note: channels will be used to extract data contralateral to stimulus presentation le_chs = ['P3', 'P5', 'P7', 'P9', 'O1', 'PO3', 'PO7'] # Left Side Channels le_inds = [epochs.ch_names.index(chn) for chn in le_chs] ri_chs = ['P4', 'P6', 'P8', 'P10', 'O2', 'PO4', 'PO8'] # Right Side Channels ri_inds = [epochs.ch_names.index(chn) for chn in ri_chs] ################################################# ## TRIAL-RELATED ANALYSIS: CANONICAL vs. FOOOF ## Pull out channels of interest for each load level # Channels extracted are those contralateral to stimulus presentation # Canonical Data lo1_a = np.concatenate([epochs_alpha['LeLo1']._data[:, ri_inds, :], epochs_alpha['RiLo1']._data[:, le_inds, :]], 0) lo2_a = np.concatenate([epochs_alpha['LeLo2']._data[:, ri_inds, :], epochs_alpha['RiLo2']._data[:, le_inds, :]], 0) lo3_a = np.concatenate([epochs_alpha['LeLo3']._data[:, ri_inds, :], epochs_alpha['RiLo3']._data[:, le_inds, :]], 0) # FOOOFed data lo1_f = np.concatenate([epochs_fooof['LeLo1']._data[:, ri_inds, :], epochs_fooof['RiLo1']._data[:, le_inds, :]], 0) lo2_f = np.concatenate([epochs_fooof['LeLo2']._data[:, ri_inds, :], epochs_fooof['RiLo2']._data[:, le_inds, :]], 0) lo3_f = np.concatenate([epochs_fooof['LeLo3']._data[:, ri_inds, :], epochs_fooof['RiLo3']._data[:, le_inds, :]], 0) ## Calculate average across trials and channels - add to group data collection # Canonical data canonical_group_avg_dat[s_ind, 0, :] = np.mean(lo1_a, 1).mean(0) canonical_group_avg_dat[s_ind, 1, :] = np.mean(lo2_a, 1).mean(0) canonical_group_avg_dat[s_ind, 2, :] = np.mean(lo3_a, 1).mean(0) # FOOOFed data fooofed_group_avg_dat[s_ind, 0, :] = np.mean(lo1_f, 1).mean(0) fooofed_group_avg_dat[s_ind, 1, :] = np.mean(lo2_f, 1).mean(0) fooofed_group_avg_dat[s_ind, 2, :] = np.mean(lo3_f, 1).mean(0) ################################################# ## FOOOFING TRIAL AVERAGED DATA # Loop loop loads & trials segments for seg_label, seg_time in zip(SEG_LABELS, SEG_TIMES): tmin, tmax = seg_time[0], seg_time[1] # Calculate PSDs across trials, fit FOOOF models to averages for le_label, ri_label, load_label in zip(['LeLo1', 'LeLo2', 'LeLo3'], ['RiLo1', 'RiLo2', 'RiLo3'], LOAD_LABELS): ## Calculate trial wise PSDs for left & right side trials trial_freqs, le_trial_psds = periodogram( epochs[le_label]._data[:, :, _time_mask(epochs.times, tmin, tmax, srate)], srate, window='hann', nfft=4*srate) trial_freqs, ri_trial_psds = periodogram( epochs[ri_label]._data[:, :, _time_mask(epochs.times, tmin, tmax, srate)], srate, window='hann', nfft=4*srate) ## FIT ALL CHANNELS VERSION if FIT_ALL_CHANNELS: ## Average spectra across trials within a given load & side le_avg_psd_contra = avg_func(le_trial_psds[:, ri_inds, :], 0) le_avg_psd_ipsi = avg_func(le_trial_psds[:, le_inds, :], 0) ri_avg_psd_contra = avg_func(ri_trial_psds[:, le_inds, :], 0) ri_avg_psd_ipsi = avg_func(ri_trial_psds[:, ri_inds, :], 0) ## Combine spectra across left & right trials for given load ch_psd_contra = np.vstack([le_avg_psd_contra, ri_avg_psd_contra]) ch_psd_ipsi = np.vstack([le_avg_psd_ipsi, ri_avg_psd_ipsi]) ## Fit FOOOFGroup to all channels, average & and collect results fg.fit(trial_freqs, ch_psd_contra, FREQ_RANGE) fm = avg_fg(fg) fg_dict[load_label]['Contra'][seg_label].append(fm.copy()) fg.fit(trial_freqs, ch_psd_ipsi, FREQ_RANGE) fm = avg_fg(fg) fg_dict[load_label]['Ipsi'][seg_label].append(fm.copy()) ## COLLAPSE ACROSS CHANNELS VERSION else: ## Average spectra across trials and channels within a given load & side le_avg_psd_contra = avg_func(avg_func(le_trial_psds[:, ri_inds, :], 0), 0) le_avg_psd_ipsi = avg_func(avg_func(le_trial_psds[:, le_inds, :], 0), 0) ri_avg_psd_contra = avg_func(avg_func(ri_trial_psds[:, le_inds, :], 0), 0) ri_avg_psd_ipsi = avg_func(avg_func(ri_trial_psds[:, ri_inds, :], 0), 0) ## Collapse spectra across left & right trials for given load avg_psd_contra = avg_func(np.vstack([le_avg_psd_contra, ri_avg_psd_contra]), 0) avg_psd_ipsi = avg_func(np.vstack([le_avg_psd_ipsi, ri_avg_psd_ipsi]), 0) ## Fit FOOOF, and collect results fm.fit(trial_freqs, avg_psd_contra, FREQ_RANGE) fg_dict[load_label]['Contra'][seg_label].append(fm.copy()) fm.fit(trial_freqs, avg_psd_ipsi, FREQ_RANGE) fg_dict[load_label]['Ipsi'][seg_label].append(fm.copy()) ################################################# ## SAVE OUT RESULTS # Save out group data np.save(pjoin(RES_PATH, 'Group', 'alpha_freqs_group'), group_fooofed_alpha_freqs) np.save(pjoin(RES_PATH, 'Group', 'canonical_group'), canonical_group_avg_dat) np.save(pjoin(RES_PATH, 'Group', 'fooofed_group'), fooofed_group_avg_dat) np.save(pjoin(RES_PATH, 'Group', 'dropped_trials'), dropped_trials) np.save(pjoin(RES_PATH, 'Group', 'dropped_components'), dropped_components) # Save out second round of FOOOFing for load_label in LOAD_LABELS: for side_label in SIDE_LABELS: for seg_label in SEG_LABELS: fg = combine_fooofs(fg_dict[load_label][side_label][seg_label]) fg.save('Group_' + load_label + '_' + side_label + '_' + seg_label, pjoin(RES_PATH, 'FOOOF'), save_results=True)
epochs.load_data() epochs = epochs.drop(epochs_2_drop, reason="bad behaviour") epochs.save(op.join(sub_path, "clean-" + epo.split(sep)[-1]), overwrite=True) print("AMOUNT OF EPOCHS AFTER MATCHING WITH BEH:", len(epochs)) print("DOES IT MATCH?", len(beh_ixs) == len(epochs)) print("\n") if len(beh_ixs) == len(epochs): ar = AutoReject(consensus=np.linspace(0, 1.0, 27), n_interpolate=np.array([1, 4, 32]), thresh_method="bayesian_optimization", cv=10, n_jobs=-1, random_state=42, verbose="progressbar") ar.fit(epochs) epo_type = epo.split(sep)[-1].split("-")[3] name = "{}-{}-{}".format(subject_id, numero, epo_type) ar_fname = op.join(qc_folder, "{}-autoreject.h5".format(name)) ar.save(ar_fname, overwrite=True) epochs_ar, rej_log = ar.transform(epochs, return_log=True) rej_log.plot(show=False) plt.savefig(op.join(qc_folder, "{}-autoreject-log.png".format(name))) plt.close("all") epo.split(sep)[-1] cleaned = op.join(sub_path, "autoreject-" + epo.split(sep)[-1]) epochs.save(op.join(sub_path, "autoreject-" + epo.split(sep)[-1]), overwrite=True) print("CLEANED EPOCHS SAVED:", cleaned)