Exemple #1
0
    def _get_pipeline_steps(self, dataset_properties):
        steps = []

        default_dataset_properties = {'target_type': 'classification'}
        if dataset_properties is not None and isinstance(
                dataset_properties, dict):
            default_dataset_properties.update(dataset_properties)

        steps.extend(
            [[
                "data_preprocessing",
                DataPreprocessor(dataset_properties=default_dataset_properties)
            ], ["balancing", Balancing()],
             [
                 "feature_preprocessor",
                 feature_preprocessing_components.FeaturePreprocessorChoice(
                     default_dataset_properties)
             ],
             [
                 'classifier',
                 classification_components.ClassifierChoice(
                     default_dataset_properties)
             ]])

        return steps
Exemple #2
0
    def _get_pipeline(self):
        steps = []

        default_dataset_properties = {'target_type': 'classification'}

        # Add the always active preprocessing components

        steps.extend([["one_hot_encoding", OneHotEncoder()],
                      ["imputation", Imputation()],
                      [
                          "rescaling",
                          rescaling_components.RescalingChoice(
                              default_dataset_properties)
                      ], ["balancing", Balancing()]])

        # Add the preprocessing component
        steps.append([
            'preprocessor',
            feature_preprocessing_components.FeaturePreprocessorChoice(
                default_dataset_properties)
        ])

        # Add the classification component
        steps.append([
            'classifier',
            classification_components.ClassifierChoice(
                default_dataset_properties)
        ])
        return steps
Exemple #3
0
    def _get_pipeline_steps(self):
        steps = []
        print(" going execute pipeline autosklearn")
        default_dataset_properties = {'target_type': 'classification'}

        steps.extend([
            ["feature_preprocessor",
             feature_preprocessing_components.FeaturePreprocessorChoice(
                 default_dataset_properties)],
            ["data_preprocessing",
                DataPreprocessor(dataset_properties=default_dataset_properties)],
            ["balancing",
                Balancing()],
            ['classifier',
                classification_components.ClassifierChoice(
                    default_dataset_properties)]
        ])

        return steps