class GEM(AutoSklearnPreprocessingAlgorithm): def __init__(self, N, precond, random_state=None): self.N = N self.precond = precond def fit(self, X, Y): self.preprocessor = GEMImpl(self.N, self.precond) self.preprocessor.fit(X, Y) return self def transform(self, X): return self.preprocessor.transform(X) @staticmethod def get_properties(dataset_properties=None): return { 'shortname': 'GEM', 'name': 'Generalized Eigenvector extraction', 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': False, 'is_deterministic': True, 'input': (DENSE, UNSIGNED_DATA), 'output': (INPUT, UNSIGNED_DATA) } @staticmethod def get_hyperparameter_search_space(dataset_properties=None): N = UniformIntegerHyperparameter("N", 5, 20, default=10) precond = UniformFloatHyperparameter("precond", 0, 0.5, default=0.1) cs = ConfigurationSpace() cs.add_hyperparameter(N) cs.add_hyperparameter(precond) return cs
class GEM(AutoSklearnPreprocessingAlgorithm): def __init__(self, N, precond, random_state=None): self.N = N self.precond = precond def fit(self, X, Y): self.preprocessor = GEMImpl(self.N, self.precond) self.preprocessor.fit(X, Y) return self def transform(self, X): return self.preprocessor.transform(X) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'GEM', 'name': 'Generalized Eigenvector extraction', 'handles_missing_values': False, 'handles_nominal_values': False, 'handles_numerical_features': True, 'prefers_data_scaled': True, 'prefers_data_normalized': True, 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': False, 'is_deterministic': True, 'handles_sparse': False, 'handles_dense': True, 'input': (DENSE, UNSIGNED_DATA), 'output': (INPUT, UNSIGNED_DATA), 'preferred_dtype': None} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): N = UniformIntegerHyperparameter("N", 5, 20, default=10) precond = UniformFloatHyperparameter("precond", 0, 0.5, default=0.1) cs = ConfigurationSpace() cs.add_hyperparameter(N) cs.add_hyperparameter(precond) return cs
def fit(self, X, Y): self.preprocessor = GEMImpl(self.N, self.precond) self.preprocessor.fit(X, Y) return self