def load_type(self, filename, verbose=True): """Get the variable types.""" if verbose: print('========= Reading ' + filename) start = time.time() type_list = [] if os.path.isfile(filename): if competition_c_functions_is_there: type_list = file_to_array( filename, verbose=False) else: type_list = file_to_array(filename, verbose=False) else: n = self.info['feat_num'] type_list = [self.info['feat_type']] * n type_list = np.array(type_list).ravel() end = time.time() if verbose: print('[+] Success in %5.2f sec' % (end - start)) return type_list
def _data_binary_sparse(filename, feat_type): # This function takes as an argument a file representing a binary sparse # matrix # binary_sparse_matrix[i][j] = a means matrix[i][j] = 1 # It converts it into a numpy array an returns this array. inner_data = file_to_array(filename) nbr_samples = len(inner_data) # the construction is easier w/ dok_sparse dok_sparse = scipy.sparse.dok_matrix((nbr_samples, len(feat_type))) print('Converting {} to dok sparse matrix'.format(filename)) for row in range(nbr_samples): for feature in inner_data[row]: dok_sparse[row, int(feature) - 1] = 1 print('Converting {} to csr sparse matrix'.format(filename)) return dok_sparse.tocsr()