Exemple #1
0
def paint_prob_distribution(bins, prob_sim, S0, sig, r, T):
    """Funtion that returns a histogram with the probabilities of the outcome measures and compares it
    with the target probability distribution.
    Args:
        bins (int): number of bins of precision. 
        prob_sim (list): probabilities from measuring the quantum circuit.
        S0 (real): initial asset price.
        sig (real): market volatility.
        r (real): market rate.
        T (real): maturity time.

    Returns:
        image of the probability histogram in a .png file.
    """
    from scipy.integrate import trapz
    mu = (r - 0.5 * sig**2) * T + np.log(S0)
    mean = np.exp(mu + 0.5 * T * sig**2)
    variance = (np.exp(T * sig**2) - 1) * np.exp(2 * mu + T * sig**2)
    S = np.linspace(max(mean - 3 * np.sqrt(variance), 0),
                    mean + 3 * np.sqrt(variance), bins)
    width = (S[1] - S[0]) / 1.2
    fig, ax = plt.subplots()
    ax.bar(S, prob_sim, width, label='Quantum', alpha=0.8)
    x = np.linspace(max(mean - 3 * np.sqrt(variance), 0),
                    mean + 3 * np.sqrt(variance), bins * 100)
    y = aux.log_normal(x, mu, sig * np.sqrt(T))
    y = y * trapz(prob_sim, S) / trapz(y, x)
    ax.plot(x, y, label='PDF', color='black')
    plt.ylabel('Probability')
    plt.xlabel('Option price')
    plt.title('Option price distribution for {} qubits '.format(bins))
    ax.legend()
    fig.tight_layout()
    fig.savefig('Probability_distribution.png')
Exemple #2
0
def load_payoff_quantum_sim(qubits, S0, sig, r, T, K):
    """Measurement gates needed to measure the expected payoff and perform post-selection
    Args:
        qubits (int): number of qubits used for the unary basis.
        S0 (real): initial asset price.
        sig (real): market volatility.
        r (real): market rate.
        T (real): maturity time.
        K (real): strike price.

    Returns:
        circuit (Circuit): full quantum circuit with the amplitude distributor and payoff estimator.
        S (np.array): equivalent asset price for each element of the unary basis.
    """
    mu = (r - 0.5 * sig**2) * T + np.log(S0)
    mean = np.exp(mu + 0.5 * T * sig**2)
    variance = (np.exp(T * sig**2) - 1) * np.exp(2 * mu + T * sig**2)
    S = np.linspace(max(mean - 3 * np.sqrt(variance), 0),
                    mean + 3 * np.sqrt(variance), qubits)
    ln = aux.log_normal(S, mu, sig * np.sqrt(T))
    q, ancilla, circuit = create_qc(qubits)
    lognormal_parameters = rw_parameters(qubits, ln)
    circuit.add(rw_circuit(qubits, lognormal_parameters))
    circuit.add(payoff_circuit(qubits, ancilla, K, S))
    circuit.add(measure_payoff(q, ancilla))
    return circuit, S
Exemple #3
0
def load_Q_operator(qubits, iterations, S0, sig, r, T, K):
    """Quantum circuit that performs the main operator for the amplitude estimation algorithm.
    Args:
        qubits (int): number of qubits used for the unary basis.
        iterations (int): number of consecutive implementations of operator Q.
        S0 (real): initial asset price.
        sig (real): market volatility.
        r (real): market rate.
        T (real): maturity time.
        K (real): strike price.

    Returns:
        circuit (Circuit): quantum circuit that performs the m=iterations step of the iterative
            amplitude estimation algorithm.
    """
    iterations = int(iterations)
    mu = (r - 0.5 * sig**2) * T + np.log(S0)
    mean = np.exp(mu + 0.5 * T * sig**2)
    variance = (np.exp(T * sig**2) - 1) * np.exp(2 * mu + T * sig**2)
    S = np.linspace(max(mean - 3 * np.sqrt(variance), 0),
                    mean + 3 * np.sqrt(variance), qubits)
    ln = aux.log_normal(S, mu, sig * np.sqrt(T))
    lognormal_parameters = rw_parameters(qubits, ln)
    q, ancilla, circuit = create_qc(qubits)
    circuit.add(rw_circuit(qubits, lognormal_parameters))
    circuit.add(payoff_circuit(qubits, ancilla, K, S))
    for i in range(iterations):
        circuit.add(Q(qubits, ancilla, K, S, lognormal_parameters))
    circuit.add(measure_payoff(q, ancilla))
    return circuit
Exemple #4
0
def get_pdf(qubits, S0, sig, r, T):
    """Get a pdf to input into the quantum register from a target probability distribution.
    Args:
        qubits (int): number of qubits used for the unary basis.
        S0 (real): initial asset price.
        sig (real): market volatility.
        r (real): market rate.
        T (real): maturity time.

    Returns:
        values (np.array): price values associated to the unary basis.
        pdf (np.array): probability distribution for the asset's price evolution.
    """
    mu = (r - 0.5 * sig**2) * T + np.log(S0)
    mean = np.exp(mu + 0.5 * T * sig**2)
    variance = (np.exp(T * sig**2) - 1) * np.exp(2 * mu + T * sig**2)
    values = np.linspace(max(mean - 3 * np.sqrt(variance), 0),
                         mean + 3 * np.sqrt(variance), qubits)
    pdf = aux.log_normal(values, mu, sig * np.sqrt(T))
    return values, pdf
import matplotlib.pyplot as plt
from aux_functions import log_normal

S0 = 2
K = 1.9
sig = 0.4
r = 0.05
T = .1
qu = 20

fig, ax = plt.subplots()
lognormal_parameters = []
(values, pdf), (mu, mean, variance) = get_pdf(qu, S0, sig, r, T)
for t in np.linspace(0.01, T, 15):
    mu = (r - 0.5 * sig**2) * t + np.log(S0)
    pdf = log_normal(values, mu, sig * np.sqrt(t))
    ax.plot(values, pdf)
    lognormal_parameters.append(rw_parameters(qu, pdf))

plt.show()
lognormal_parameters = np.array(lognormal_parameters).transpose()
fig, ax = plt.subplots()

from scipy.optimize import curve_fit


def func(x, a, b, c):
    return a * x**b + c


for i in range(qu - 1):