Exemple #1
0
random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
"""==================================================================================================="""
##################### NETWORK SETUP ##################
#NOTE: Networks that can be used: 'bninception, resnet50, resnet101, alexnet...'
#>>>>  see import pretrainedmodels; pretrainedmodels.model_names
opt.device = torch.device('cuda')
model = netlib.networkselect(opt)
# if opt.wandb_log: wandb.watch(model)

print(
    '{} Setup for {} with {} sampling on {} complete with #weights: {}'.format(
        opt.loss.upper(), opt.arch.upper(), opt.sampling.upper(),
        opt.dataset.upper(), aux.gimme_params(model)))

_ = model.to(opt.device)
to_optim = [{
    'params': model.parameters(),
    'lr': opt.lr,
    'weight_decay': opt.decay
}]
"""============================================================================"""
#################### DATALOADER SETUPS ##################

dataloaders = data.give_dataloaders(opt.dataset, opt)
opt.num_classes = len(dataloaders['training'].dataset.avail_classes)
print("num of classes", opt.num_classes)
print("num of training samples", len(dataloaders['training']))
"""============================================================================"""
Exemple #2
0
    json.dump(option_dict, f)
pkl.dump(opt, open(opt.save_path + "/hypa.pkl", "wb"))

#################### CREATE LOGGING FILES ###############
InfoPlotter = aux.InfoPlotter(opt.save_path + '/InfoPlot.svg')
CSV_log_train = aux.CSV_Writer(opt.save_path + '/log_epoch_train.csv',
                               ['Epoch', 'Loss', 'Time'])
CSV_log_val = aux.CSV_Writer(opt.save_path + '/log_epoch_val.csv',
                             ['Epoch', 'Loss', 'Time'])
Progress_Saver = {'Train Loss': [], 'Val Loss': []}

#################### SETUP TRIPLENET ###################
opt.device = torch.device('cuda')
model = netlib.FC_AlexNet(opt.num_classes)
print('TripletNet Setup complete with #weights: {}'.format(
    aux.gimme_params(model)))
_ = model.to(opt.device)

#################### TRAINING SETUP ####################
triplet_loss = netlib.TripletLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                            step_size=opt.tau,
                                            gamma=opt.gamma)
global best_val_loss
best_val_loss = np.inf


#################### TRAINER & EVALUATION FUNCTIONS ############################
def train_one_epoch(dataloader, model, optimizer, triplet_loss, opt,
                    progress_saver, epoch):
Exemple #3
0
def main():
    ################### INPUT ARGUMENTS ###################
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_cluster',
                        default=200,
                        type=int,
                        help='number of kmeans cluster')
    parser.add_argument('--lr', default=0.05, type=float, help='Learning Rate')
    parser.add_argument('--arch',
                        default='alexnet',
                        type=str,
                        help='Learning Rate')
    parser.add_argument('--l2',
                        default=0.00001,
                        type=float,
                        help='L2-Weight-regularization')
    parser.add_argument('--perc_data',
                        default=1,
                        type=float,
                        help='L2-Weight-regularization')
    parser.add_argument(
        '--cluster_intv',
        default=1,
        type=int,
        help='Number of epchs before recomputing supervised cluster labels')
    parser.add_argument('--kernels',
                        default=8,
                        type=int,
                        help='Number of cores to use.')
    parser.add_argument('--bs',
                        default=2,
                        type=int,
                        help='Mini-Batchsize to use.')
    parser.add_argument('--seed',
                        default=1,
                        type=int,
                        help='Random seed for reproducibility.')
    parser.add_argument('--n_epochs',
                        default=100,
                        type=int,
                        help='Number of training epochs.')
    parser.add_argument('--gpu', default=0, type=int, help='GPU to use.')
    parser.add_argument('--iter_update',
                        default=200,
                        type=int,
                        help='Number of iterations before each log entry.')
    # parser.add_argument('--save_path',    default='/export/home/kroth/Project_Manifold/SAVEDATA', type=str, help='Path to save training information')
    # parser.add_argument('--data_path',    default='/export/home/kroth/Project_Manifold/LOADDATA', type=str, help='Path to load training information')
    parser.add_argument(
        '--save_path',
        default=
        '/home/karsten_dl/Dropbox/Data_Dump/DeepClustering/SAVEDATA/DeepClusterNetwork_Training',
        type=str,
        help='Path to save training information')
    parser.add_argument(
        '--data_path',
        default='/home/karsten_dl/Dropbox/Data_Dump/DeepClustering/LOADDATA',
        type=str,
        help='Path to save training information')
    parser.add_argument('--savename',
                        default='',
                        type=str,
                        help='Save Folder Name')
    parser.add_argument('--pca_dim',
                        default=128,
                        type=int,
                        help='Use sobel filter as initialization.')
    parser.add_argument('--no_sobel',
                        action='store_true',
                        help='Use sobel filter as initialization.')
    parser.add_argument('--no_dim_reduction',
                        action='store_true',
                        help='Use sobel filter as initialization.')
    parser.add_argument('--make_umap_plots',
                        action='store_true',
                        help='Use sobel filter as initialization.')
    parser.add_argument('--dont_preload_images',
                        action='store_true',
                        help='Use sobel filter as initialization.')
    opt = parser.parse_args(['--dont_preload_images', '--perc_data', '0.01'])

    opt.use_sobel = not opt.no_sobel
    opt.use_dim_reduction = not opt.no_dim_reduction
    opt.preload_images = not opt.dont_preload_images

    ################ FIX SEEDS ##################
    torch.manual_seed(opt.seed)
    torch.cuda.manual_seed(opt.seed)
    np.random.seed(opt.seed)
    random.seed(opt.seed)
    rng = np.random.RandomState(opt.seed)

    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu)

    opt.device = torch.device('cuda')

    ################ SET DATALOADER ###########
    print('\033[92m' + 'Setting up DataLoader... ' + '\033[0m')
    image_dataset = dataset.CelebA_Dataset(opt.data_path,
                                           perc_data=opt.perc_data,
                                           preload_images=opt.preload_images)
    image_dataloader = DataLoader(image_dataset,
                                  batch_size=opt.bs,
                                  num_workers=opt.kernels,
                                  pin_memory=True)
    input_size = image_dataset[0]['Input Image'].numpy().shape[1:]
    print('Done.\n')

    ################ LOAD MODEL ################
    print('\033[92m' + 'Setting up network [{}]... '.format(opt.arch.upper()) +
          '\033[0m')
    imp.reload(netlib)
    model = netlib.AlexNet(opt.num_cluster,
                           input_size,
                           use_sobel=opt.use_sobel,
                           use_batchnorm=True)
    _ = model.to(device)

    ################ SET OPTIMIZER ############
    optimizer = torch.optim.SGD(filter(lambda x: x.requires_grad,
                                       model.parameters()),
                                lr=opt.lr,
                                momentum=0.9,
                                weight_decay=opt.l2)
    loss_function = nn.CrossEntropyLoss().cuda()
    print('Done with [#weights] {}.\n'.format(aux.gimme_params(model)))

    ############### SET SAVEFOLDER ############
    savename = model.name
    if opt.savename == '':
        savename += '___' + opt.savename
    date = datetime.datetime.now()
    savename += '___' + '-'.join(
        str(x) for x in
        [date.year, date.month, date.day, date.hour, date.minute, date.second])
    opt.savename = savename
    opt.savefolder = opt.save_path + '/' + opt.savename
    checkfolder, counter = opt.savefolder, 1

    while os.path.exists(checkfolder):
        checkfolder = opt.savefolder + '_' + str(counter)
        counter += 1
    opt.savefolder = checkfolder
    os.makedirs(opt.savefolder)

    ################ SET LOGGING ##############
    plot_generator = aux.InfoPlotter(opt.savefolder + '/training_progress.png')
    logs = aux.LogSet([
        'cluster time', 'train time per iter', 'train time per epoch',
        'loss per iter', 'loss per epoch'
    ])
    CSV_Log_per_batch = aux.CSV_Writer(
        opt.savefolder + '/training_log_iter-' + str(opt.iter_update) + '.csv',
        columns=['Iteration', 'Loss', 'Elapsed Time'])
    CSV_Log_per_epoch = aux.CSV_Writer(
        opt.savefolder + '/training_log_epoch-' + str(opt.n_epochs) + '.csv',
        columns=['Epoch', 'Loss', 'Elapsed Time'])

    ################ Training Function ###############
    print('\033[93m' + 'Starting Training...\n' + '\033[0m')
    epoch_iterator = trange(opt.n_epochs, position=0)
    epoch_iterator.set_description('Running Training...')

    for epoch in epoch_iterator:
        opt.epoch = epoch
        # opt.make_umap_plots = True if epoch%3==0 else False

        image_dataloader.dataset.labels = None
        pseudolabels = compute_clusters_and_set_dataloader_labels(
            image_dataloader, model, opt)

        clustering.adjust_model_compute_clusters_and_set_dataloader_labels(
            image_dataloader, model, opt, logs)
        aux.train_network_one_epoch(image_dataloader, model, loss_function,
                                    optimizer, opt, epoch, logs,
                                    CSV_Log_per_batch, CSV_Log_per_epoch)
        epoch_iterator.set_description(
            'Network Training | Curr Loss: {} | Best Loss: {}'.format(
                logs.logs['loss per epoch'].log[-1],
                np.min(logs.logs['loss per epoch'].log)))
        if epoch >= 2:
            plot_generator.make_plot(range(epoch + 1),
                                     logs.logs['loss per epoch'].log)
Exemple #4
0

"""============================================================================"""
#################### SEEDS FOR REPROD. #####################
torch.backends.cudnn.deterministic=True
np.random.seed(opt.seed); random.seed(opt.seed)
torch.manual_seed(opt.seed); torch.cuda.manual_seed(opt.seed); torch.cuda.manual_seed_all(opt.seed)


"""============================================================================"""
##################### NETWORK SETUP ##################
opt.device = torch.device('cuda')
#Depending on the choice opt.arch, networkselect() returns the respective network model
model      = netlib.networkselect(opt)

print('{} Setup for {} with {} sampling on {} complete with #weights: {}'.format(opt.loss.upper(), opt.arch.upper(), opt.sampling.upper(), opt.dataset.upper(), aux.gimme_params(model)))

#Push to Device
_          = model.to(opt.device)
#Place trainable parameter in list of parameters to train:
if 'fc_lr_mul' in vars(opt).keys() and opt.fc_lr_mul!=0:
    all_but_fc_params = list(filter(lambda x: 'last_linear' not in x[0],model.named_parameters()))
    fc_params         = model.model.last_linear.parameters()
    to_optim          = [{'params':all_but_fc_params,'lr':opt.lr,'weight_decay':opt.decay},
                         {'params':fc_params,'lr':opt.lr*opt.fc_lr_mul,'weight_decay':opt.decay}]
else:
    to_optim   = [{'params':model.parameters(),'lr':opt.lr,'weight_decay':opt.decay}]



Exemple #5
0
def main():
    ############## SEEDS #########################################
    torch.manual_seed(opt.seed)
    torch.cuda.manual_seed(opt.seed)
    np.random.seed(opt.seed)
    random.seed(opt.seed)
    torch.backends.cudnn.deterministic = True

    bcolor = aux.bcolors

    ############## GPU SETTINGS ##################################
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu)

    ############## SET DATASETS AND -LOADER ######################
    print(bcolor.HEADER + 'Setting DataLoader... ' + bcolor.ENDC)
    if opt.dataset == 'cars196':
        train_dataset, val_dataset = aux.give_CARS196_datasets(opt)
    if opt.dataset == 'cub200':
        train_dataset, val_dataset = aux.give_CUB200_datasets(opt)
    if opt.dataset == 'online_products':
        train_dataset, val_dataset = aux.give_OnlineProducts_datasets(opt)
    train_dataloader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=opt.bs,
                                                   num_workers=opt.kernels,
                                                   shuffle=True,
                                                   pin_memory=True)
    val_dataloader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=opt.bs,
                                                 num_workers=opt.kernels,
                                                 pin_memory=True)
    opt.num_classes = len(train_dataset.avail_classes)
    print('Done.')

    ############## INITIALIZE NETWORK ######################
    print(bcolor.HEADER + 'Setting up Network & Log-Files... ' + bcolor.ENDC,
          end='')

    #################### CREATE SAVING FOLDER ###############
    date = datetime.datetime.now()
    time_string = '{}-{}-{}-{}-{}-{}'.format(date.year, date.month, date.day,
                                             date.hour, date.minute,
                                             date.second)
    checkfolder = opt.save_path + '/{}_JigsawNetwork_'.format(
        opt.dataset) + time_string
    counter = 1
    while os.path.exists(checkfolder):
        checkfolder = opt.save_path + '_' + str(counter)
        counter += 1
    os.makedirs(checkfolder)
    opt.save_path = checkfolder

    #################### SAVE OPTIONS TO TXT ################
    with open(opt.save_path + '/Parameter_Info.txt', 'w') as f:
        f.write(aux.gimme_save_string(opt))
    pkl.dump(opt, open(opt.save_path + "/hypa.pkl", "wb"))

    #################### CREATE LOGGING FILES ###############
    InfoPlotter = aux.InfoPlotter(opt.save_path + '/InfoPlot.svg')
    full_log = aux.CSV_Writer(opt.save_path + '/log_epoch.csv',
                              ['Epoch', 'Train Loss', 'Val Loss', 'Val Acc'])
    Progress_Saver = {'Train Loss': [], 'Val NMI': [], 'Val Recall Sum': []}

    #################### SETUP JIGSAW NETWORK ###################
    opt.device = torch.device('cuda')
    model = netlib.NetworkSelect(opt)
    print('JIGSAW Setup for [{}] complete with #weights: {}'.format(
        opt.arch, aux.gimme_params(model)))
    _ = model.to(opt.device)

    global best_val_acc
    best_val_acc = 0

    ################### SET OPTIMIZATION SETUP ##################
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=opt.lr,
                                 weight_decay=1e-4)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                opt.tau,
                                                gamma=opt.gamma)
    print('Done.')

    ############## START TRAINING ###########################
    print(bcolor.BOLD + bcolor.WARNING +
          'Starting Jigsaw Network Training!\n' + bcolor.ENDC + bcolor.ENDC)

    for epoch in range(opt.n_epochs):
        scheduler.step()

        ### Training ###
        train_one_epoch(opt, epoch, net, optimizer, criterion,
                        train_dataloader, Metrics)

        ### Validating ###
        evaluate(opt, epoch, net, criterion, val_dataloader, Metrics)

        ###### Logging Epoch Data ######
        full_log.log([
            len(Metrics['Train Loss']), Metrics["Train Loss"][-1],
            Metrics["Train Acc"][-1], Metrics["Val Acc"][-1]
        ])

        ###### Generating Summary Plots #######
        InfoPlotter.make_plot(range(epoch + 1), Progress_Saver['Train Loss'],
                              Progress_Saver['Val Acc'],
                              ['Train Loss', 'Val Acc'])