Exemple #1
0
    def _package_result(self, strategy: 'BaseStrategy'):
        metric_value = self.result()

        metric_name = get_metric_name(self, strategy)
        plot_x_position = self.get_global_counter()

        return [MetricValue(self, metric_name, metric_value, plot_x_position)]
Exemple #2
0
    def _package_result(self, strategy: 'BaseStrategy') -> MetricResult:
        exp_cpu = self.result()

        metric_name = get_metric_name(self, strategy, add_experience=True)
        plot_x_position = self._next_x_position(metric_name)

        return [MetricValue(self, metric_name, exp_cpu, plot_x_position)]
Exemple #3
0
    def _package_result(self, strategy: 'PluggableStrategy') -> MetricResult:
        exp_time = self.result()

        metric_name = get_metric_name(self, strategy)
        plot_x_position = self._next_x_position(metric_name)

        return [MetricValue(self, metric_name, exp_time, plot_x_position)]
Exemple #4
0
    def _package_result(self, strategy: 'BaseStrategy') -> MetricResult:
        exp_time = self.result()

        metric_name = get_metric_name(self, strategy, add_experience=True)
        plot_x_position = self.get_global_counter()

        return [MetricValue(self, metric_name, exp_time, plot_x_position)]
    def _package_result(self, strategy: 'PluggableStrategy') -> MetricResult:
        ram_usage = self.result()

        metric_name = get_metric_name(self, strategy, add_experience=True)
        plot_x_position = self._next_x_position(metric_name)

        return [MetricValue(self, metric_name, ram_usage, plot_x_position)]
Exemple #6
0
    def _package_result(self, strategy: 'BaseStrategy') -> MetricResult:
        metric_value = self.result()

        metric_name = get_metric_name(self, strategy)
        plot_x_position = self._next_x_position(metric_name)

        return [MetricValue(self, metric_name, metric_value, plot_x_position)]
Exemple #7
0
    def _package_result(self, strategy: 'BaseStrategy') -> MetricResult:
        average_epoch_time = self.result()

        metric_name = get_metric_name(self, strategy)
        plot_x_position = self.get_global_counter()

        return [
            MetricValue(self, metric_name, average_epoch_time, plot_x_position)
        ]
Exemple #8
0
 def _package_result(self, strategy) -> "MetricResult":
     weights = self.result()
     metric_name = get_metric_name(
         self, strategy, add_experience=True, add_task=False
     )
     return [
         MetricValue(
             self, metric_name, weights, strategy.clock.train_iterations
         )
     ]
    def _package_result(self, strategy: "BaseStrategy") -> MetricResult:

        shifting = self.result(k=self.eval_exp_id)
        metric_name = get_metric_name(self, strategy, add_experience=True)
        plot_x_position = self.get_global_counter()

        metric_values = [
            MetricValue(self, metric_name, shifting, plot_x_position)
        ]
        return metric_values
Exemple #10
0
    def _package_result(self, strategy: 'PluggableStrategy') \
            -> MetricResult:

        forgetting = self.result()
        metric_name = get_metric_name(self, strategy, add_experience=True)
        plot_x_position = self._next_x_position(metric_name)

        metric_values = [
            MetricValue(self, metric_name, forgetting, plot_x_position)
        ]
        return metric_values
    def _package_result(self, strategy: "BaseStrategy") -> MetricResult:
        # Only after the previous experience was trained on can we return the
        # forward transfer metric for this experience.
        result = self.result(k=self.eval_exp_id)
        if result is not None:
            metric_name = get_metric_name(self, strategy, add_experience=True)
            plot_x_position = strategy.clock.train_iterations

            metric_values = [
                MetricValue(self, metric_name, result, plot_x_position)
            ]
            return metric_values
Exemple #12
0
    def _package_result(self, strategy: 'BaseStrategy') -> \
            MetricResult:
        metric_value = self.result()
        plot_x_position = self.get_global_counter()
        results = []
        for k, v in metric_value.items():
            metric_name = get_metric_name(self,
                                          strategy,
                                          add_experience=False,
                                          add_task=k)
            results.append(MetricValue(self, metric_name, v, plot_x_position))

        return results
    def _package_result(self, strategy: "SupervisedTemplate") -> MetricResult:
        # this checks if the evaluation experience has been
        # already encountered at training time
        # before the last training.
        # If not, forgetting should not be returned.
        forgetting = self.result(k=self.eval_exp_id)
        if forgetting is not None:
            metric_name = get_metric_name(self, strategy, add_experience=True)
            plot_x_position = strategy.clock.train_iterations

            metric_values = [
                MetricValue(self, metric_name, forgetting, plot_x_position)
            ]
            return metric_values
Exemple #14
0
    def _package_result(self, strategy: 'BaseStrategy') \
            -> MetricResult:
        # this checks if the evaluation experience has been
        # already encountered at training time
        # before the last training.
        # If not, forgetting should not be returned.
        forgetting = self.result(k=self.eval_exp_id)
        if forgetting is not None:
            metric_name = get_metric_name(self, strategy, add_experience=True)
            plot_x_position = self.get_global_counter()

            metric_values = [
                MetricValue(self, metric_name, forgetting, plot_x_position)
            ]
            return metric_values
Exemple #15
0
    def _make_grid_sample(self, strategy: "BaseStrategy") -> "MetricResult":
        self._load_sorted_images(strategy)

        return [
            MetricValue(
                self,
                name=get_metric_name(
                    self,
                    strategy,
                    add_experience=self.mode == "eval",
                    add_task=True,
                ),
                value=TensorImage(
                    make_grid(list(self.images),
                              normalize=False,
                              nrow=self.n_cols)),
                x_plot=strategy.clock.train_iterations,
            )
        ]
Exemple #16
0
    def _package_result(self, strategy: "BaseStrategy") -> "MetricResult":
        label_cat2mean_score: Dict[LabelCat, float] = self.result()

        for label_cat, m in label_cat2mean_score.items():
            self.label_cat2step2mean[label_cat][self.global_it_counter] = m

        base_metric_name = get_metric_name(
            self, strategy, add_experience=False, add_task=False
        )

        rv = [
            MetricValue(
                self,
                name=base_metric_name + f"/{label_cat}_classes",
                value=m,
                x_plot=self.global_it_counter,
            )
            for label_cat, m in label_cat2mean_score.items()
        ]
        if "old" in label_cat2mean_score and "new" in label_cat2mean_score:
            rv.append(
                MetricValue(
                    self,
                    name=base_metric_name + f"/new_old_diff",
                    value=label_cat2mean_score["new"]
                    - label_cat2mean_score["old"],
                    x_plot=self.global_it_counter,
                )
            )
        if self.image_creator is not None:
            rv.append(
                MetricValue(
                    self,
                    name=base_metric_name,
                    value=AlternativeValues(
                        self.image_creator(self.label_cat2step2mean),
                        self.label_cat2step2mean,
                    ),
                    x_plot=self.global_it_counter,
                )
            )

        return rv
Exemple #17
0
    def _package_result(self, strategy):
        base_metric_name = get_metric_name(self,
                                           strategy,
                                           add_experience=True,
                                           add_task=False)
        plot_x_position = strategy.clock.train_iterations
        result_dict = self.result()

        if result_dict is None:
            return

        metric_values = []
        for iou, iou_dict in result_dict.items():
            for metric_key, metric_value in iou_dict.items():
                metric_name = base_metric_name + f"/{iou}/{metric_key}"
                metric_values.append(
                    MetricValue(self, metric_name, metric_value,
                                plot_x_position))

        return metric_values
Exemple #18
0
 def _package_result(self, strategy) -> 'MetricResult':
     weights = self.result()
     metric_name = get_metric_name(self, strategy, 
                                   add_experience=True, add_task=False)
     return [MetricValue(self, metric_name, weights, 
                         self.get_global_counter())]