def main(args):

    # Model getter: specify dataset and depth of the network.
    model = pytorchcv_wrapper.resnet('cifar10', depth=20, pretrained=False)

    # Or get a more specific model. E.g. wide resnet, with depth 40 and growth
    # factor 8 for Cifar 10.
    # model = pytorchcv_wrapper.get_model("wrn40_8_cifar10", pretrained=False)

    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}"
                          if torch.cuda.is_available() and
                          args.cuda >= 0 else "cpu")

    device = "cpu"

    # --- TRANSFORMATIONS
    transform = transforms.Compose([
        ToTensor(),
        transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))
    ])

    # --- SCENARIO CREATION
    cifar_train = CIFAR10(root=expanduser("~") + "/.avalanche/data/cifar10/",
                          train=True, download=True, transform=transform)
    cifar_test = CIFAR10(root=expanduser("~") + "/.avalanche/data/cifar10/",
                         train=False, download=True, transform=transform)
    scenario = nc_benchmark(
        cifar_train, cifar_test, 5, task_labels=False, seed=1234,
        fixed_class_order=[i for i in range(10)])

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True, epoch=True, experience=True, stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=[interactive_logger])

    # CREATE THE STRATEGY INSTANCE (Naive, with Replay)
    cl_strategy = Naive(model, torch.optim.SGD(model.parameters(), lr=0.01),
                        CrossEntropyLoss(),
                        train_mb_size=100, train_epochs=1, eval_mb_size=100,
                        device=device,
                        plugins=[ReplayPlugin(mem_size=1000)],
                        evaluator=eval_plugin
                        )

    # TRAINING LOOP
    print('Starting experiment...')
    results = []
    for experience in scenario.train_stream:
        print("Start of experience ", experience.current_experience)
        cl_strategy.train(experience)
        print('Training completed')

        print('Computing accuracy on the whole test set')
        results.append(cl_strategy.eval(scenario.test_stream))
Exemple #2
0
def main(args):
    model = SimpleMLP(hidden_size=args.hs)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    # check if selected GPU is available or use CPU
    assert args.cuda == -1 or args.cuda >= 0, "cuda must be -1 or >= 0."
    device = torch.device(
        f"cuda:{args.cuda}"
        if torch.cuda.is_available() and args.cuda >= 0
        else "cpu"
    )
    print(f"Using device: {device}")

    # create Permuted MNIST scenario
    scenario = PermutedMNIST(n_experiences=4)

    interactive_logger = InteractiveLogger()
    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True, epoch=True, experience=True, stream=True
        ),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=[interactive_logger],
    )

    # create strategy
    assert (
        len(args.lambda_e) == 1 or len(args.lambda_e) == 5
    ), "Lambda_e must be a non-empty list."
    lambda_e = args.lambda_e[0] if len(args.lambda_e) == 1 else args.lambda_e

    strategy = LFL(
        model,
        optimizer,
        criterion,
        lambda_e=lambda_e,
        train_epochs=args.epochs,
        device=device,
        train_mb_size=args.minibatch_size,
        evaluator=eval_plugin,
    )

    # train on the selected scenario with the chosen strategy
    print("Starting experiment...")
    results = []
    for train_batch_info in scenario.train_stream:
        print(
            "Start training on experience ", train_batch_info.current_experience
        )

        strategy.train(train_batch_info, num_workers=0)
        print(
            "End training on experience ", train_batch_info.current_experience
        )
        print("Computing accuracy on the test set")
        results.append(strategy.eval(scenario.test_stream[:]))
Exemple #3
0
def main(args):
    model = SimpleMLP(hidden_size=args.hs)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    # check if selected GPU is available or use CPU
    assert args.cuda == -1 or args.cuda >= 0, "cuda must be -1 or >= 0."
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    print(f'Using device: {device}')

    # create scenario
    if args.scenario == 'pmnist':
        scenario = PermutedMNIST(n_experiences=args.permutations)
    elif args.scenario == 'smnist':
        scenario = SplitMNIST(n_experiences=5, return_task_id=False)
    else:
        raise ValueError("Wrong scenario name. Allowed pmnist, smnist.")

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()

    eval_plugin = EvaluationPlugin(accuracy_metrics(minibatch=True,
                                                    epoch=True,
                                                    experience=True,
                                                    stream=True),
                                   loss_metrics(minibatch=True,
                                                epoch=True,
                                                experience=True,
                                                stream=True),
                                   forgetting_metrics(experience=True),
                                   loggers=[interactive_logger])

    # create strategy
    strategy = EWC(model,
                   optimizer,
                   criterion,
                   args.ewc_lambda,
                   args.ewc_mode,
                   decay_factor=args.decay_factor,
                   train_epochs=args.epochs,
                   device=device,
                   train_mb_size=args.minibatch_size,
                   evaluator=eval_plugin)

    # train on the selected scenario with the chosen strategy
    print('Starting experiment...')
    results = []
    for experience in scenario.train_stream:
        print("Start training on experience ", experience.current_experience)

        strategy.train(experience)
        print("End training on experience", experience.current_experience)
        print('Computing accuracy on the test set')
        results.append(strategy.eval(scenario.test_stream[:]))
Exemple #4
0
def main(args):
    model = SimpleMLP(hidden_size=args.hs)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    # check if selected GPU is available or use CPU
    assert args.cuda == -1 or args.cuda >= 0, "cuda must be -1 or >= 0."
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    print(f'Using device: {device}')

    # create split scenario
    scenario = SplitMNIST(n_experiences=5, return_task_id=False)

    interactive_logger = InteractiveLogger()
    eval_plugin = EvaluationPlugin(accuracy_metrics(minibatch=True,
                                                    epoch=True,
                                                    experience=True,
                                                    stream=True),
                                   loss_metrics(minibatch=True,
                                                epoch=True,
                                                experience=True,
                                                stream=True),
                                   forgetting_metrics(experience=True),
                                   loggers=[interactive_logger])

    # create strategy
    assert len(args.lwf_alpha) == 1 or len(args.lwf_alpha) == 5,\
        'Alpha must be a non-empty list.'
    lwf_alpha = args.lwf_alpha[0] if len(args.lwf_alpha) == 1 \
        else args.lwf_alpha

    strategy = LwF(model,
                   optimizer,
                   criterion,
                   alpha=lwf_alpha,
                   temperature=args.softmax_temperature,
                   train_epochs=args.epochs,
                   device=device,
                   train_mb_size=args.minibatch_size,
                   evaluator=eval_plugin)

    # train on the selected scenario with the chosen strategy
    print('Starting experiment...')
    results = []
    for train_batch_info in scenario.train_stream:
        print("Start training on experience ",
              train_batch_info.current_experience)

        strategy.train(train_batch_info, num_workers=0)
        print("End training on experience ",
              train_batch_info.current_experience)
        print('Computing accuracy on the test set')
        results.append(strategy.eval(scenario.test_stream[:]))
Exemple #5
0
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")

    # --- SCENARIO CREATION
    scenario = SplitMNIST(n_experiences=10, seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=[interactive_logger],
    )

    # CREATE THE STRATEGY INSTANCE (GenerativeReplay)
    cl_strategy = GenerativeReplay(
        model,
        torch.optim.Adam(model.parameters(), lr=0.001),
        CrossEntropyLoss(),
        train_mb_size=100,
        train_epochs=4,
        eval_mb_size=100,
        device=device,
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience ", experience.current_experience)
        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))
Exemple #6
0
def main(args):

    # Config
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # model
    model = MTSimpleMLP()

    # CL Benchmark Creation
    scenario = SplitMNIST(n_experiences=5, return_task_id=True)
    train_stream = scenario.train_stream
    test_stream = scenario.test_stream

    # Prepare for training & testing
    optimizer = Adam(model.parameters(), lr=0.01)
    criterion = CrossEntropyLoss()

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=False,
                         epoch=True,
                         experience=True,
                         stream=True),
        forgetting_metrics(experience=True),
        loggers=[interactive_logger],
    )

    # Choose a CL strategy
    strategy = EWC(
        model=model,
        optimizer=optimizer,
        criterion=criterion,
        train_mb_size=128,
        train_epochs=3,
        eval_mb_size=128,
        device=device,
        evaluator=eval_plugin,
        ewc_lambda=0.4,
    )

    # train and test loop
    for train_task in train_stream:
        strategy.train(train_task)
        strategy.eval(test_stream)
Exemple #7
0
def run_base_online(experience, device, use_interactive_logger: bool = False):
    """
    Runs OnlineNaive for one experience.
    """

    # Create list of loggers to be used
    loggers = []
    if use_interactive_logger:
        interactive_logger = InteractiveLogger()
        loggers.append(interactive_logger)

    # Evaluation plugin
    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=loggers,
    )

    # Model
    model = SimpleMLP(num_classes=10)

    # Create OnlineNaive strategy
    cl_strategy = OnlineNaive(
        model,
        torch.optim.SGD(model.parameters(), lr=0.01),
        CrossEntropyLoss(),
        num_passes=1,
        train_mb_size=1,
        device=device,
        evaluator=eval_plugin,
    )

    start = time.time()
    print("Running OnlineNaive ...")
    cl_strategy.train(experience)
    end = time.time()
    duration = end - start

    return duration
Exemple #8
0
def main(args):
    # Device config
    device = torch.device(f"cuda:{args.cuda}"
                          if torch.cuda.is_available() and
                          args.cuda >= 0 else "cpu")
    print('device ', device)
    # ---------

    # --- TRANSFORMATIONS
    _mu = [0.485, 0.456, 0.406]  # imagenet normalization
    _std = [0.229, 0.224, 0.225]
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=_mu,
                             std=_std)
    ])
    # ---------

    # --- SCENARIO CREATION
    scenario = CORe50(scenario=args.scenario, train_transform=transform,
                      eval_transform=transform)

    # ---------

    eval_plugin = EvaluationPlugin(
        loss_metrics(epoch=True, experience=True, stream=True),
        accuracy_metrics(epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True, stream=True),
        loggers=[InteractiveLogger()]
    )

    criterion = torch.nn.CrossEntropyLoss()
    model = SLDAResNetModel(device=device, arch='resnet18',
                            imagenet_pretrained=args.imagenet_pretrained)

    # CREATE THE STRATEGY INSTANCE
    cl_strategy = StreamingLDA(model, criterion,
                               args.feature_size, args.n_classes,
                               eval_mb_size=args.batch_size,
                               train_mb_size=args.batch_size,
                               train_epochs=1,
                               shrinkage_param=args.shrinkage,
                               streaming_update_sigma=args.plastic_cov,
                               device=device, evaluator=eval_plugin)

    warnings.warn(
        "The Deep SLDA example is not perfectly aligned with "
        "the paper implementation since it does not use a base "
        "initialization phase and instead starts streming from "
        "pre-trained weights.")

    # TRAINING LOOP
    print('Starting experiment...')
    for i, exp in enumerate(scenario.train_stream):

        # fit SLDA model to batch (one sample at a time)
        cl_strategy.train(exp)

        # evaluate model on test data
        cl_strategy.eval(scenario.test_stream)
Exemple #9
0
def run_base(experience, device, use_interactive_logger: bool = False):
    """
        Runs Naive (from BaseStrategy) for one experience.
    """
    def create_sub_experience_list(experience):
        """Creates a list of sub-experiences from an experience.
        It returns a list of experiences, where each experience is
        a subset of the original experience.

        :param experience: single Experience.

        :return: list of Experience.
        """

        # Shuffle the indices
        indices = torch.randperm(len(experience.dataset))
        num_sub_exps = len(indices)
        mb_size = 1
        sub_experience_list = []
        for subexp_id in range(num_sub_exps):
            subexp_indices = indices[subexp_id * mb_size:(subexp_id + 1) *
                                     mb_size]
            sub_experience = copy.copy(experience)
            subexp_ds = AvalancheSubset(sub_experience.dataset,
                                        indices=subexp_indices)
            sub_experience.dataset = subexp_ds
            sub_experience_list.append(sub_experience)

        return sub_experience_list

    # Create list of loggers to be used
    loggers = []
    if use_interactive_logger:
        interactive_logger = InteractiveLogger()
        loggers.append(interactive_logger)

    # Evaluation plugin
    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=loggers,
    )

    # Model
    model = SimpleMLP(num_classes=10)

    # Create OnlineNaive strategy
    cl_strategy = Naive(
        model,
        torch.optim.SGD(model.parameters(), lr=0.01),
        CrossEntropyLoss(),
        train_mb_size=1,
        device=device,
        evaluator=eval_plugin,
    )

    start = time.time()
    sub_experience_list = create_sub_experience_list(experience)

    # !!! This is only for profiling purpose. This method may not work
    # in practice for dynamic modules since the model adaptation step
    # can go wrong.

    # Train for each sub-experience
    print("Running OnlineNaive ...")
    for i, sub_experience in enumerate(sub_experience_list):
        experience = sub_experience
        cl_strategy.train(experience)
    end = time.time()
    duration = end - start

    return duration
Exemple #10
0
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        RandomCrop(28, padding=4),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, ))
    ])
    test_transform = transforms.Compose(
        [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
    # ---------

    # --- SCENARIO CREATION
    mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
                        train=True,
                        download=True,
                        transform=train_transform)
    mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
                       train=False,
                       download=True,
                       transform=test_transform)
    scenario = nc_benchmark(mnist_train,
                            mnist_test,
                            5,
                            task_labels=False,
                            seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    # DEFINE THE EVALUATION PLUGIN AND LOGGER
    # The evaluation plugin manages the metrics computation.
    # It takes as argument a list of metrics and a list of loggers.
    # The evaluation plugin calls the loggers to serialize the metrics
    # and save them in persistent memory or print them in the standard output.

    # log to text file
    text_logger = TextLogger(open('log.txt', 'a'))

    # print to stdout
    interactive_logger = InteractiveLogger()

    csv_logger = CSVLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         epoch_running=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True,
                     epoch=True,
                     epoch_running=True,
                     experience=True,
                     stream=True),
        forgetting_metrics(experience=True, stream=True),
        bwt_metrics(experience=True, stream=True),
        forward_transfer_metrics(experience=True, stream=True),
        cpu_usage_metrics(minibatch=True,
                          epoch=True,
                          epoch_running=True,
                          experience=True,
                          stream=True),
        timing_metrics(minibatch=True,
                       epoch=True,
                       epoch_running=True,
                       experience=True,
                       stream=True),
        ram_usage_metrics(every=0.5,
                          minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        gpu_usage_metrics(args.cuda,
                          every=0.5,
                          minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        disk_usage_metrics(minibatch=True,
                           epoch=True,
                           experience=True,
                           stream=True),
        MAC_metrics(minibatch=True, epoch=True, experience=True),
        loggers=[interactive_logger, text_logger, csv_logger],
        collect_all=True)  # collect all metrics (set to True by default)

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(model,
                        SGD(model.parameters(), lr=0.001, momentum=0.9),
                        CrossEntropyLoss(),
                        train_mb_size=500,
                        train_epochs=1,
                        eval_mb_size=100,
                        device=device,
                        evaluator=eval_plugin,
                        eval_every=1)

    # TRAINING LOOP
    print('Starting experiment...')
    results = []
    for i, experience in enumerate(scenario.train_stream):
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        # train returns a dictionary containing last recorded value
        # for each metric.
        res = cl_strategy.train(experience,
                                eval_streams=[scenario.test_stream])
        print('Training completed')

        print('Computing accuracy on the whole test set')
        # test returns a dictionary with the last metric collected during
        # evaluation on that stream
        results.append(cl_strategy.eval(scenario.test_stream))

    print(f"Test metrics:\n{results}")

    # Dict with all the metric curves,
    # only available when `collect_all` is True.
    # Each entry is a (x, metric value) tuple.
    # You can use this dictionary to manipulate the
    # metrics without avalanche.
    all_metrics = cl_strategy.evaluator.get_all_metrics()
    print(f"Stored metrics: {list(all_metrics.keys())}")
Exemple #11
0
def main(args):
    model = SimpleMLP(hidden_size=args.hs)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    # check if selected GPU is available or use CPU
    assert args.cuda == -1 or args.cuda >= 0, "cuda must be -1 or >= 0."
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    print(f"Using device: {device}")

    # create scenario
    if args.scenario == "pmnist":
        scenario = PermutedMNIST(n_experiences=args.permutations)
    elif args.scenario == "smnist":
        mnist_train = MNIST(
            root=expanduser("~") + "/.avalanche/data/mnist/",
            train=True,
            download=True,
            transform=ToTensor(),
        )
        mnist_test = MNIST(
            root=expanduser("~") + "/.avalanche/data/mnist/",
            train=False,
            download=True,
            transform=ToTensor(),
        )
        scenario = nc_benchmark(mnist_train,
                                mnist_test,
                                5,
                                task_labels=False,
                                seed=1234)
    else:
        raise ValueError("Wrong scenario name. Allowed pmnist, smnist.")

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()
    tensorboard_logger = TensorboardLogger()
    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True, stream=True),
        bwt_metrics(experience=True, stream=True),
        loggers=[interactive_logger, tensorboard_logger],
    )

    # create strategy
    strategy = EWC(
        model,
        optimizer,
        criterion,
        args.ewc_lambda,
        args.ewc_mode,
        decay_factor=args.decay_factor,
        train_epochs=args.epochs,
        device=device,
        train_mb_size=args.minibatch_size,
        evaluator=eval_plugin,
    )

    # train on the selected scenario with the chosen strategy
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start training on experience ", experience.current_experience)

        strategy.train(experience)
        print("End training on experience", experience.current_experience)
        print("Computing accuracy on the test set")
        results.append(strategy.eval(scenario.test_stream[:]))
Exemple #12
0
def main(args):
    # --- CONFIG
    device = torch.device(
        f"cuda:{args.cuda}"
        if torch.cuda.is_available() and args.cuda >= 0
        else "cpu"
    )

    # --- SCENARIO CREATION
    scenario = SplitCIFAR100(n_experiences=20, return_task_id=True)
    config = {"scenario": "SplitCIFAR100"}

    # MODEL CREATION
    model = MTSimpleCNN()

    # choose some metrics and evaluation method
    loggers = [InteractiveLogger()]
    if args.wandb_project != "":
        wandb_logger = WandBLogger(
            project_name=args.wandb_project,
            run_name="LaMAML_" + config["scenario"],
            config=config,
        )
        loggers.append(wandb_logger)

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True, epoch=True, experience=True, stream=True
        ),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=loggers,
    )

    # LAMAML STRATEGY
    rs_buffer = ReservoirSamplingBuffer(max_size=200)
    replay_plugin = ReplayPlugin(
        mem_size=200,
        batch_size=10,
        batch_size_mem=10,
        task_balanced_dataloader=False,
        storage_policy=rs_buffer,
    )

    cl_strategy = LaMAML(
        model,
        torch.optim.SGD(model.parameters(), lr=0.1),
        CrossEntropyLoss(),
        n_inner_updates=5,
        second_order=True,
        grad_clip_norm=1.0,
        learn_lr=True,
        lr_alpha=0.25,
        sync_update=False,
        train_mb_size=10,
        train_epochs=10,
        eval_mb_size=100,
        device=device,
        plugins=[replay_plugin],
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience ", experience.current_experience)
        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))

    if args.wandb_project != "":
        wandb.finish()
def main(args):
    # --- CONFIG
    device = torch.device(
        f"cuda:{args.cuda}"
        if torch.cuda.is_available() and args.cuda >= 0
        else "cpu"
    )
    # ---------

    tr_ds = [
        AvalancheTensorDataset(
            torch.randn(10, 3),
            torch.randint(0, 3, (10,)).tolist(),
            task_labels=torch.randint(0, 5, (10,)).tolist(),
        )
        for _ in range(3)
    ]
    ts_ds = [
        AvalancheTensorDataset(
            torch.randn(10, 3),
            torch.randint(0, 3, (10,)).tolist(),
            task_labels=torch.randint(0, 5, (10,)).tolist(),
        )
        for _ in range(3)
    ]
    scenario = create_multi_dataset_generic_benchmark(
        train_datasets=tr_ds, test_datasets=ts_ds
    )
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=3, input_size=3)

    # DEFINE THE EVALUATION PLUGIN AND LOGGER
    # The evaluation plugin manages the metrics computation.
    # It takes as argument a list of metrics and a list of loggers.
    # The evaluation plugin calls the loggers to serialize the metrics
    # and save them in persistent memory or print them in the standard output.

    # log to text file
    text_logger = TextLogger(open("log.txt", "a"))

    # print to stdout
    interactive_logger = InteractiveLogger()

    csv_logger = CSVLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        loss_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        forgetting_metrics(experience=True, stream=True),
        bwt_metrics(experience=True, stream=True),
        cpu_usage_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        timing_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        ram_usage_metrics(
            every=0.5, minibatch=True, epoch=True, experience=True, stream=True
        ),
        gpu_usage_metrics(
            args.cuda,
            every=0.5,
            minibatch=True,
            epoch=True,
            experience=True,
            stream=True,
        ),
        disk_usage_metrics(
            minibatch=True, epoch=True, experience=True, stream=True
        ),
        MAC_metrics(minibatch=True, epoch=True, experience=True),
        loggers=[interactive_logger, text_logger, csv_logger],
        collect_all=True,
    )  # collect all metrics (set to True by default)

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(
        model,
        SGD(model.parameters(), lr=0.001, momentum=0.9),
        CrossEntropyLoss(),
        train_mb_size=500,
        train_epochs=1,
        eval_mb_size=100,
        device=device,
        evaluator=eval_plugin,
        eval_every=1,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for i, experience in enumerate(scenario.train_stream):
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        # train returns a dictionary containing last recorded value
        # for each metric.
        res = cl_strategy.train(experience, eval_streams=[scenario.test_stream])
        print("Training completed")

        print("Computing accuracy on the whole test set")
        # test returns a dictionary with the last metric collected during
        # evaluation on that stream
        results.append(cl_strategy.eval(scenario.test_stream))

    print(f"Test metrics:\n{results}")

    # Dict with all the metric curves,
    # only available when `collect_all` is True.
    # Each entry is a (x, metric value) tuple.
    # You can use this dictionary to manipulate the
    # metrics without avalanche.
    all_metrics = cl_strategy.evaluator.get_all_metrics()
    print(f"Stored metrics: {list(all_metrics.keys())}")
Exemple #14
0
root = ".."

# log to Tensorboard
tb_logger = TensorboardLogger(root)

# log to text file
text_logger = TextLogger(open(f"{root}/log.txt", "w"))

# print to stdout
interactive_logger = InteractiveLogger()

eval_plugin = EvaluationPlugin(
    accuracy_metrics(minibatch=True, epoch=True, experience=True, stream=True),
    loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
    timing_metrics(epoch=True, epoch_running=True),
    forgetting_metrics(experience=True, stream=True),
    cpu_usage_metrics(experience=True),
    confusion_matrix_metrics(num_classes=NUM_CLASSES[data_name],
                             save_image=False,
                             stream=True),
    disk_usage_metrics(minibatch=True,
                       epoch=True,
                       experience=True,
                       stream=True),
    loggers=[interactive_logger, text_logger, tb_logger],
)

num_epoch = 70
for eval_mode in EVALUATION_PROTOCOLS:
    for mode in ["feature", "image"]:
        if eval_mode == "streaming":
Exemple #15
0
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        RandomCrop(28, padding=4),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, )),
    ])
    test_transform = transforms.Compose(
        [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
    # ---------

    # --- SCENARIO CREATION
    mnist_train = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=True,
        download=True,
        transform=train_transform,
    )
    mnist_test = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=False,
        download=True,
        transform=test_transform,
    )
    scenario = nc_benchmark(mnist_train,
                            mnist_test,
                            5,
                            task_labels=False,
                            seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    interactive_logger = InteractiveLogger()
    wandb_logger = WandBLogger(project_name=args.project,
                               run_name=args.run,
                               config=vars(args))

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        loss_metrics(
            minibatch=True,
            epoch=True,
            epoch_running=True,
            experience=True,
            stream=True,
        ),
        forgetting_metrics(experience=True, stream=True),
        confusion_matrix_metrics(stream=True,
                                 wandb=True,
                                 class_names=[str(i) for i in range(10)]),
        cpu_usage_metrics(minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        timing_metrics(minibatch=True,
                       epoch=True,
                       experience=True,
                       stream=True),
        ram_usage_metrics(every=0.5,
                          minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        gpu_usage_metrics(
            args.cuda,
            every=0.5,
            minibatch=True,
            epoch=True,
            experience=True,
            stream=True,
        ),
        disk_usage_metrics(minibatch=True,
                           epoch=True,
                           experience=True,
                           stream=True),
        MAC_metrics(minibatch=True, epoch=True, experience=True),
        loggers=[interactive_logger, wandb_logger],
    )

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(
        model,
        SGD(model.parameters(), lr=0.001, momentum=0.9),
        CrossEntropyLoss(),
        train_mb_size=100,
        train_epochs=4,
        eval_mb_size=100,
        device=device,
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))
Exemple #16
0
    def setUpClass(cls) -> None:
        torch.manual_seed(0)
        np.random.seed(0)
        random.seed(0)

        n_samples_per_class = 100
        datasets = []
        for i in range(3):
            dataset = make_classification(n_samples=3 * n_samples_per_class,
                                          n_classes=3,
                                          n_features=3,
                                          n_informative=3,
                                          n_redundant=0)
            X = torch.from_numpy(dataset[0]).float()
            y = torch.from_numpy(dataset[1]).long()
            train_X, test_X, train_y, test_y = train_test_split(X,
                                                                y,
                                                                train_size=0.5,
                                                                shuffle=True,
                                                                stratify=y)
            datasets.append((train_X, train_y, test_X, test_y))

        tr_ds = [
            AvalancheTensorDataset(
                tr_X,
                tr_y,
                dataset_type=AvalancheDatasetType.CLASSIFICATION,
                task_labels=torch.randint(0, 3, (150, )).tolist())
            for tr_X, tr_y, _, _ in datasets
        ]
        ts_ds = [
            AvalancheTensorDataset(
                ts_X,
                ts_y,
                dataset_type=AvalancheDatasetType.CLASSIFICATION,
                task_labels=torch.randint(0, 3, (150, )).tolist())
            for _, _, ts_X, ts_y in datasets
        ]
        benchmark = dataset_benchmark(train_datasets=tr_ds,
                                      test_datasets=ts_ds)
        model = SimpleMLP(num_classes=3, input_size=3)

        f = open('log.txt', 'w')
        text_logger = TextLogger(f)
        eval_plugin = EvaluationPlugin(
            accuracy_metrics(minibatch=True,
                             epoch=True,
                             epoch_running=True,
                             experience=True,
                             stream=True,
                             trained_experience=True),
            loss_metrics(minibatch=True,
                         epoch=True,
                         epoch_running=True,
                         experience=True,
                         stream=True),
            forgetting_metrics(experience=True, stream=True),
            confusion_matrix_metrics(num_classes=3,
                                     save_image=False,
                                     normalize='all',
                                     stream=True),
            bwt_metrics(experience=True, stream=True),
            forward_transfer_metrics(experience=True, stream=True),
            cpu_usage_metrics(minibatch=True,
                              epoch=True,
                              epoch_running=True,
                              experience=True,
                              stream=True),
            timing_metrics(minibatch=True,
                           epoch=True,
                           epoch_running=True,
                           experience=True,
                           stream=True),
            ram_usage_metrics(every=0.5,
                              minibatch=True,
                              epoch=True,
                              experience=True,
                              stream=True),
            disk_usage_metrics(minibatch=True,
                               epoch=True,
                               experience=True,
                               stream=True),
            MAC_metrics(minibatch=True, epoch=True, experience=True),
            loggers=[text_logger],
            collect_all=True)  # collect all metrics (set to True by default)
        cl_strategy = BaseStrategy(model,
                                   SGD(model.parameters(),
                                       lr=0.001,
                                       momentum=0.9),
                                   CrossEntropyLoss(),
                                   train_mb_size=2,
                                   train_epochs=2,
                                   eval_mb_size=2,
                                   device=DEVICE,
                                   evaluator=eval_plugin,
                                   eval_every=1)
        for i, experience in enumerate(benchmark.train_stream):
            cl_strategy.train(experience,
                              eval_streams=[benchmark.test_stream],
                              shuffle=False)
            cl_strategy.eval(benchmark.test_stream)
        cls.all_metrics = cl_strategy.evaluator.get_all_metrics()
        f.close()
        # # Uncomment me to regenerate the reference metrics. Make sure
        # # the old tests were passing for all unchanged metrics
        # with open(os.path.join(pathlib.Path(__file__).parent.absolute(),
        #                        'target_metrics',
        #                        'tpp.pickle'), 'wb') as f:
        #     pickle.dump(dict(cls.all_metrics), f,
        #                 protocol=4)
        with open(
                os.path.join(
                    pathlib.Path(__file__).parent.absolute(), 'target_metrics',
                    'tpp.pickle'), 'rb') as f:
            cls.ref = pickle.load(f)
Exemple #17
0
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        Resize(224),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, ))
    ])
    test_transform = transforms.Compose([
        Resize(224),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, ))
    ])
    # ---------

    # --- SCENARIO CREATION
    scenario = SplitCIFAR10(5,
                            train_transform=train_transform,
                            eval_transform=test_transform)
    # ---------

    # MODEL CREATION
    model = MobilenetV1()
    adapt_classification_layer(model, scenario.n_classes, bias=False)

    # DEFINE THE EVALUATION PLUGIN AND LOGGER

    my_logger = TensorboardLogger(tb_log_dir="logs",
                                  tb_log_exp_name="logging_example")

    # print to stdout
    interactive_logger = InteractiveLogger()

    evaluation_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=[my_logger, interactive_logger],
    )

    # CREATE THE STRATEGY INSTANCE (NAIVE with the Synaptic Intelligence plugin)
    cl_strategy = SynapticIntelligence(
        model,
        Adam(model.parameters(), lr=0.001),
        CrossEntropyLoss(),
        si_lambda=0.0001,
        train_mb_size=128,
        train_epochs=4,
        eval_mb_size=128,
        device=device,
        evaluator=evaluation_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))
Exemple #18
0
    def setUpClass(cls) -> None:
        torch.manual_seed(0)
        np.random.seed(0)
        random.seed(0)

        n_samples_per_class = 100
        dataset = make_classification(n_samples=6 * n_samples_per_class,
                                      n_classes=6,
                                      n_features=4,
                                      n_informative=4,
                                      n_redundant=0)
        X = torch.from_numpy(dataset[0]).float()
        y = torch.from_numpy(dataset[1]).long()
        train_X, test_X, train_y, test_y = train_test_split(X,
                                                            y,
                                                            train_size=0.5,
                                                            shuffle=True,
                                                            stratify=y)
        tr_d = TensorDataset(train_X, train_y)
        ts_d = TensorDataset(test_X, test_y)
        benchmark = nc_benchmark(train_dataset=tr_d,
                                 test_dataset=ts_d,
                                 n_experiences=3,
                                 task_labels=True,
                                 shuffle=False,
                                 seed=0)
        model = SimpleMLP(input_size=4, num_classes=benchmark.n_classes)

        f = open('log.txt', 'w')
        text_logger = TextLogger(f)
        eval_plugin = EvaluationPlugin(
            accuracy_metrics(minibatch=True,
                             epoch=True,
                             epoch_running=True,
                             experience=True,
                             stream=True),
            loss_metrics(minibatch=True,
                         epoch=True,
                         epoch_running=True,
                         experience=True,
                         stream=True),
            forgetting_metrics(experience=True, stream=True, task=True),
            confusion_matrix_metrics(num_classes=6,
                                     save_image=False,
                                     normalize='all',
                                     stream=True),
            bwt_metrics(experience=True, stream=True, task=True),
            cpu_usage_metrics(minibatch=True,
                              epoch=True,
                              epoch_running=True,
                              experience=True,
                              stream=True),
            timing_metrics(minibatch=True,
                           epoch=True,
                           epoch_running=True,
                           experience=True,
                           stream=True),
            ram_usage_metrics(every=0.5,
                              minibatch=True,
                              epoch=True,
                              experience=True,
                              stream=True),
            disk_usage_metrics(minibatch=True,
                               epoch=True,
                               experience=True,
                               stream=True),
            MAC_metrics(minibatch=True, epoch=True, experience=True),
            loggers=[text_logger],
            collect_all=True)  # collect all metrics (set to True by default)
        cl_strategy = BaseStrategy(model,
                                   SGD(model.parameters(),
                                       lr=0.001,
                                       momentum=0.9),
                                   CrossEntropyLoss(),
                                   train_mb_size=10,
                                   train_epochs=2,
                                   eval_mb_size=10,
                                   device=DEVICE,
                                   evaluator=eval_plugin,
                                   eval_every=1)
        for i, experience in enumerate(benchmark.train_stream):
            cl_strategy.train(experience,
                              eval_streams=[benchmark.test_stream[i]],
                              shuffle=False)
            cl_strategy.eval(benchmark.test_stream)
        cls.all_metrics = cl_strategy.evaluator.get_all_metrics()
        f.close()
        # with open(os.path.join(pathlib.Path(__file__).parent.absolute(),
        #                        'target_metrics',
        #                        'mt.pickle'), 'wb') as f:
        #     pickle.dump(dict(cls.all_metrics), f,
        #                 protocol=pickle.HIGHEST_PROTOCOL)
        with open(
                os.path.join(
                    pathlib.Path(__file__).parent.absolute(), 'target_metrics',
                    'mt.pickle'), 'rb') as f:
            cls.ref = pickle.load(f)
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    n_batches = 5
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        RandomCrop(28, padding=4),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, )),
    ])
    test_transform = transforms.Compose(
        [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
    # ---------

    # --- SCENARIO CREATION
    mnist_train = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=True,
        download=True,
        transform=train_transform,
    )
    mnist_test = MNIST(
        root=expanduser("~") + "/.avalanche/data/mnist/",
        train=False,
        download=True,
        transform=test_transform,
    )
    scenario = nc_benchmark(mnist_train,
                            mnist_test,
                            n_batches,
                            task_labels=False,
                            seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    # choose some metrics and evaluation method
    interactive_logger = InteractiveLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
        forgetting_metrics(experience=True),
        loggers=[interactive_logger],
    )

    # CREATE THE STRATEGY INSTANCE (ONLINE-NAIVE)
    cl_strategy = OnlineNaive(
        model,
        torch.optim.Adam(model.parameters(), lr=0.001),
        CrossEntropyLoss(),
        num_passes=1,
        train_mb_size=1,
        eval_mb_size=32,
        device=device,
        evaluator=eval_plugin,
    )

    # TRAINING LOOP
    print("Starting experiment...")
    results = []
    for experience in scenario.train_stream:
        print("Start of experience ", experience.current_experience)
        cl_strategy.train(experience)
        print("Training completed")

        print("Computing accuracy on the whole test set")
        results.append(cl_strategy.eval(scenario.test_stream))
Exemple #20
0
    def setUpClass(cls) -> None:
        torch.manual_seed(0)
        np.random.seed(0)
        random.seed(0)

        n_samples_per_class = 100
        dataset = make_classification(
            n_samples=6 * n_samples_per_class,
            n_classes=6,
            n_features=4,
            n_informative=4,
            n_redundant=0,
        )
        X = torch.from_numpy(dataset[0]).float()
        y = torch.from_numpy(dataset[1]).long()
        train_X, test_X, train_y, test_y = train_test_split(X,
                                                            y,
                                                            train_size=0.5,
                                                            shuffle=True,
                                                            stratify=y)
        tr_d = TensorDataset(train_X, train_y)
        ts_d = TensorDataset(test_X, test_y)
        benchmark = nc_benchmark(
            train_dataset=tr_d,
            test_dataset=ts_d,
            n_experiences=3,
            task_labels=True,
            shuffle=False,
            seed=0,
        )
        model = SimpleMLP(input_size=4, num_classes=benchmark.n_classes)

        f = open("log.txt", "w")
        text_logger = TextLogger(f)
        eval_plugin = EvaluationPlugin(
            accuracy_metrics(
                minibatch=True,
                epoch=True,
                epoch_running=True,
                experience=True,
                stream=True,
                trained_experience=True,
            ),
            loss_metrics(
                minibatch=True,
                epoch=True,
                epoch_running=True,
                experience=True,
                stream=True,
            ),
            forgetting_metrics(experience=True, stream=True),
            confusion_matrix_metrics(num_classes=6,
                                     save_image=False,
                                     normalize="all",
                                     stream=True),
            bwt_metrics(experience=True, stream=True),
            forward_transfer_metrics(experience=True, stream=True),
            cpu_usage_metrics(
                minibatch=True,
                epoch=True,
                epoch_running=True,
                experience=True,
                stream=True,
            ),
            timing_metrics(
                minibatch=True,
                epoch=True,
                epoch_running=True,
                experience=True,
                stream=True,
            ),
            ram_usage_metrics(
                every=0.5,
                minibatch=True,
                epoch=True,
                experience=True,
                stream=True,
            ),
            disk_usage_metrics(minibatch=True,
                               epoch=True,
                               experience=True,
                               stream=True),
            MAC_metrics(minibatch=True, epoch=True, experience=True),
            loggers=[text_logger],
            collect_all=True,
        )  # collect all metrics (set to True by default)
        cl_strategy = BaseStrategy(
            model,
            SGD(model.parameters(), lr=0.001, momentum=0.9),
            CrossEntropyLoss(),
            train_mb_size=10,
            train_epochs=2,
            eval_mb_size=10,
            device=DEVICE,
            evaluator=eval_plugin,
            eval_every=1,
        )
        for i, experience in enumerate(benchmark.train_stream):
            cl_strategy.train(experience,
                              eval_streams=[benchmark.test_stream],
                              shuffle=False)
            cl_strategy.eval(benchmark.test_stream)
        cls.all_metrics = cl_strategy.evaluator.get_all_metrics()
        f.close()
        # Set the environment variable UPDATE_METRICS to True to update
        # the pickle file with target values.
        # Make sure the old tests were passing for all unchanged metrics
        if UPDATE_METRICS:
            with open(
                    os.path.join(
                        pathlib.Path(__file__).parent.absolute(),
                        "target_metrics",
                        "mt.pickle",
                    ),
                    "wb",
            ) as f:
                pickle.dump(dict(cls.all_metrics), f, protocol=4)
        with open(
                os.path.join(
                    pathlib.Path(__file__).parent.absolute(),
                    "target_metrics",
                    "mt.pickle",
                ),
                "rb",
        ) as f:
            cls.ref = pickle.load(f)