def test_agem(self): # SIT scenario model, optimizer, criterion, my_nc_benchmark = self.init_sit() strategy = AGEM( model, optimizer, criterion, patterns_per_exp=250, sample_size=256, train_mb_size=10, eval_mb_size=50, train_epochs=2, ) self.run_strategy(my_nc_benchmark, strategy) # MT scenario strategy = AGEM( model, optimizer, criterion, patterns_per_exp=250, sample_size=256, train_mb_size=10, eval_mb_size=50, train_epochs=2, ) benchmark = self.load_benchmark(use_task_labels=True) self.run_strategy(benchmark, strategy)
def test_agem(self): model = self.get_model(fast_test=self.fast_test) optimizer = SGD(model.parameters(), lr=1e-3) criterion = CrossEntropyLoss() # SIT scenario my_nc_scenario = self.load_scenario(fast_test=self.fast_test) strategy = AGEM(model, optimizer, criterion, patterns_per_exp=250, sample_size=256, train_mb_size=10, eval_mb_size=50, train_epochs=2) self.run_strategy(my_nc_scenario, strategy) # MT scenario strategy = AGEM(model, optimizer, criterion, patterns_per_exp=250, sample_size=256, train_mb_size=10, eval_mb_size=50, train_epochs=2) scenario = self.load_scenario(fast_test=self.fast_test, use_task_labels=True) self.run_strategy(scenario, strategy)
def main(args): model = SimpleMLP(hidden_size=args.hs) optimizer = torch.optim.SGD(model.parameters(), lr=args.lr) criterion = torch.nn.CrossEntropyLoss() # check if selected GPU is available or use CPU assert args.cuda == -1 or args.cuda >= 0, "cuda must be -1 or >= 0." device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu") print(f'Using device: {device}') # create scenario if args.scenario == 'pmnist': scenario = PermutedMNIST(n_experiences=args.permutations) elif args.scenario == 'smnist': scenario = SplitMNIST(n_experiences=5, return_task_id=False) else: raise ValueError("Wrong scenario name. Allowed pmnist, smnist.") # choose some metrics and evaluation method interactive_logger = InteractiveLogger() eval_plugin = EvaluationPlugin( accuracy_metrics(minibatch=True, epoch=True, experience=True, stream=True), loss_metrics(minibatch=True, epoch=True, experience=True, stream=True), forgetting_metrics(experience=True), loggers=[interactive_logger]) # create strategy if args.strategy == 'gem': strategy = GEM(model, optimizer, criterion, args.patterns_per_exp, args.memory_strength, train_epochs=args.epochs, device=device, train_mb_size=10, evaluator=eval_plugin) elif args.strategy == 'agem': strategy = AGEM(model, optimizer, criterion, args.patterns_per_exp, args.sample_size, train_epochs=args.epochs, device=device, train_mb_size=10, evaluator=eval_plugin) else: raise ValueError("Wrong strategy name. Allowed gem, agem.") # train on the selected scenario with the chosen strategy print('Starting experiment...') results = [] for experience in scenario.train_stream: print("Start training on experience ", experience.current_experience) strategy.train(experience) print("End training on experience ", experience.current_experience) print('Computing accuracy on the test set') results.append(strategy.eval(scenario.test_stream[:]))