def test_gdumb(self):
        # SIT scenario
        model, optimizer, criterion, my_nc_benchmark = self.init_sit()
        strategy = GDumb(
            model,
            optimizer,
            criterion,
            mem_size=200,
            train_mb_size=64,
            device=self.device,
            eval_mb_size=50,
            train_epochs=2,
        )
        self.run_strategy(my_nc_benchmark, strategy)

        # MT scenario
        strategy = GDumb(
            model,
            optimizer,
            criterion,
            mem_size=200,
            train_mb_size=64,
            device=self.device,
            eval_mb_size=50,
            train_epochs=2,
        )
        benchmark = self.load_benchmark(use_task_labels=True)
        self.run_strategy(benchmark, strategy)
Exemple #2
0
    def test_gdumb(self):
        model = self.get_model(fast_test=self.fast_test)
        optimizer = SGD(model.parameters(), lr=1e-3)
        criterion = CrossEntropyLoss()

        # SIT scenario
        my_nc_scenario = self.load_scenario(fast_test=self.fast_test)
        strategy = GDumb(model,
                         optimizer,
                         criterion,
                         mem_size=200,
                         train_mb_size=64,
                         device=self.device,
                         eval_mb_size=50,
                         train_epochs=2)
        self.run_strategy(my_nc_scenario, strategy)

        # MT scenario
        strategy = GDumb(model,
                         optimizer,
                         criterion,
                         mem_size=200,
                         train_mb_size=64,
                         device=self.device,
                         eval_mb_size=50,
                         train_epochs=2)
        scenario = self.load_scenario(fast_test=self.fast_test,
                                      use_task_labels=True)
        self.run_strategy(scenario, strategy)
Exemple #3
0
elif (args.cl_strategy == "AR1"):
    cl_strategy = AR1(model,
                      Adam(model.parameters(), lr=0.001),
                      CrossEntropyLoss(),
                      ewc_lambda=0.5,
                      train_mb_size=args.batch_size,
                      train_epochs=args.num_epochs,
                      eval_mb_size=args.batch_size * 2,
                      evaluator=eval_plugin,
                      device=device)
elif (args.cl_strategy == "GDumb"):
    cl_strategy = GDumb(model,
                        Adam(model.parameters(), lr=0.001),
                        CrossEntropyLoss(),
                        mem_size=200,
                        train_mb_size=args.batch_size,
                        train_epochs=args.num_epochs,
                        eval_mb_size=args.batch_size * 2,
                        evaluator=eval_plugin,
                        device=device)
else:
    print("Strategy is not implemented!")
    raise NotImplementedError

# TRAINING LOOP
print('Starting experiment...')
results = []
for experience in scenario.train_stream:
    curr_experience = experience.current_experience
    print("Start of experience: ", curr_experience)
    print("Current Classes: ", experience.classes_in_this_experience)