Exemple #1
0
    def before_training_exp(self, strategy, **kwargs):
        if self.freeze_remaining_model and strategy.training_exp_counter > 0:
            self.freeze_other_layers()

        # Count current classes and number of samples for each of them.
        data = strategy.experience.dataset
        self.model.cur_j = examples_per_class(data.targets)
        self.cur_class = [cls for cls in set(self.model.cur_j.keys()) if
                          self.model.cur_j[cls] > 0]

        self.reset_weights(self.cur_class)
Exemple #2
0
    def _before_training_exp(self, **kwargs):
        self.model.eval()
        self.model.end_features.train()
        self.model.output.train()

        if self.clock.train_exp_counter > 0:
            # In AR1 batch 0 is treated differently as the feature extractor is
            # left more free to learn.
            # This if is executed for batch > 0, in which we freeze layers
            # below "self.freeze_below_layer" (which usually is the latent
            # replay layer!) and we also change the parameters of BatchReNorm
            # layers to a more conservative configuration.

            # "freeze_up_to" will freeze layers below "freeze_below_layer"
            # Beware that Batch ReNorm layers are not frozen!
            freeze_up_to(
                self.model,
                freeze_until_layer=self.freeze_below_layer,
                layer_filter=AR1.filter_bn_and_brn,
            )

            # Adapt the parameters of BatchReNorm layers
            change_brn_pars(
                self.model,
                momentum=self.inc_update_rate,
                r_d_max_inc_step=0,
                r_max=self.max_r_max,
                d_max=self.max_d_max,
            )

            # Adapt the model and optimizer
            self.model = self.model.to(self.device)
            self.optimizer = SGD(
                self.model.parameters(),
                lr=self.lr,
                momentum=self.momentum,
                weight_decay=self.l2,
            )

        # super()... will run S.I. and CWR* plugin callbacks
        super()._before_training_exp(**kwargs)

        # Update cur_j of CWR* to consider latent patterns
        if self.clock.train_exp_counter > 0:
            for class_id, count in examples_per_class(self.rm[1]).items():
                self.model.cur_j[class_id] += count
            self.cwr_plugin.cur_class = [
                cls
                for cls in set(self.model.cur_j.keys())
                if self.model.cur_j[cls] > 0
            ]
            self.cwr_plugin.reset_weights(self.cwr_plugin.cur_class)