def normalize(val, cut):
     if cut is None:
         ar = ak.to_numpy(ak.fill_none(val, np.nan))
         return ar
     else:
         ar = ak.to_numpy(ak.fill_none(val[cut], np.nan))
         return ar
Exemple #2
0
def add_mutriggerSF(weights, leadingmuon, year, selection):
    def mask(w):
        return np.where(selection.all('onemuon'), w, 1.)

    mu_pt = np.array(ak.fill_none(leadingmuon.pt, 0.))
    mu_eta = np.array(ak.fill_none(abs(leadingmuon.eta), 0.))
    nom = mask(compiled[f'{year}_mutrigweight_pt_abseta'](mu_pt, mu_eta))
    shift = mask(compiled[f'{year}_mutrigweight_pt_abseta_mutrigweightShift'](
        mu_pt, mu_eta))
    weights.add('mu_trigger', nom, shift, shift=True)
def test_fill_none_axis_deprecated():
    ak.deprecations_as_errors = False

    with pytest.deprecated_call():
        filled = ak.fill_none(array, 10)
        assert ak.to_list(filled) == [[None, 2], 10, [4, None]]

        with pytest.deprecated_call():
            filled_twice = ak.fill_none(filled, 20)
            assert ak.to_list(filled_twice) == [[20, 2], 10, [4, 20]]
Exemple #4
0
def isCleanJet(jets, electrons, muons, taus, drmin=0.4):
    ''' Returns mask to select clean jets '''
    # Think we can do the jet cleaning like this? It's based on L355 of https://github.com/areinsvo/TTGamma_LongExercise/blob/FullAnalysis/ttgamma/processor.py
    # However, not really sure how "nearest" works, so probably should look into that more at some point
    # But this new version of the function does seem to be returning the same mask as the old version
    jetEle, jetEleDR = jets.nearest(electrons, return_metric=True)
    jetMu, jetMuDR = jets.nearest(muons, returyyppn_metric=True)
    jetTau, jetTauDR = jets.nearest(taus, returyyppn_metric=True)
    jetEleMask = ak.fill_none(jetEleDR > drmin, True)
    jetMuMask = ak.fill_none(jetMuDR > drmin, True)
    jetTauMask = ak.fill_none(jetTauDR > drmin, True)
    return (jetEleMask & jetMuMask & jetTauMask)
Exemple #5
0
def add_jetTriggerSF(weights, leadingjet, year, selection):
    def mask(w):
        return np.where(selection.all('noleptons'), w, 1.)

    jet_pt = np.array(ak.fill_none(leadingjet.pt, 0.))
    jet_msd = np.array(ak.fill_none(leadingjet.msoftdrop,
                                    0.))  # note: uncorrected
    nom = mask(jet_triggerSF[f'fatjet_triggerSF{year}'].evaluate(
        "nominal", jet_pt, jet_msd))
    up = mask(jet_triggerSF[f'fatjet_triggerSF{year}'].evaluate(
        "stat_up", jet_pt, jet_msd))
    down = mask(jet_triggerSF[f'fatjet_triggerSF{year}'].evaluate(
        "stat_dn", jet_pt, jet_msd))
    weights.add('jet_trigger', nom, up, down)
Exemple #6
0
def test_highlevel():
    array = ak.Array([[1.1, 2.2, None, 3.3], [], [4.4, None, 5.5]])
    assert ak.to_list(ak.fill_none(array, 999, axis=1)) == [
        [1.1, 2.2, 999, 3.3],
        [],
        [4.4, 999, 5.5],
    ]
    assert ak.to_list(ak.fill_none(array, [1, 2, 3], axis=1)) == [
        [1.1, 2.2, [1, 2, 3], 3.3],
        [],
        [4.4, [1, 2, 3], 5.5],
    ]
    assert ak.to_list(ak.fill_none(array, [], axis=1)) == [
        [1.1, 2.2, [], 3.3],
        [],
        [4.4, [], 5.5],
    ]
    assert ak.to_list(ak.fill_none(array, {"x": 999}, axis=1)) == [
        [1.1, 2.2, {
            "x": 999
        }, 3.3],
        [],
        [4.4, {
            "x": 999
        }, 5.5],
    ]

    array = ak.Array([[1.1, 2.2, 3.3], None, [], None, [4.4, 5.5]])
    assert ak.to_list(ak.fill_none(array, 999, axis=0)) == [
        [1.1, 2.2, 3.3],
        999,
        [],
        999,
        [4.4, 5.5],
    ]
    assert ak.to_list(ak.fill_none(array, [1, 2, 3], axis=0)) == [
        [1.1, 2.2, 3.3],
        [1, 2, 3],
        [],
        [1, 2, 3],
        [4.4, 5.5],
    ]
    assert ak.to_list(ak.fill_none(array, {"x": 999}, axis=0)) == [
        [1.1, 2.2, 3.3],
        {
            "x": 999
        },
        [],
        {
            "x": 999
        },
        [4.4, 5.5],
    ]
    assert ak.to_list(ak.fill_none(array, [], axis=0)) == [
        [1.1, 2.2, 3.3],
        [],
        [],
        [],
        [4.4, 5.5],
    ]
Exemple #7
0
def find_first_parent(particle, maxgen=10):
    tmp_mother = particle.parent
    out_mother_pdg = tmp_mother.pdgId
    found = ak.zeros_like(particle.pdgId)

    for i in range(maxgen):
        update = ak.fill_none(
            (tmp_mother.pdgId != particle.pdgId) * (found == 0), False)
        out_mother_pdg = update * ak.fill_none(tmp_mother.pdgId,
                                               0) + (~update) * out_mother_pdg
        found = found + update
        tmp_mother = tmp_mother.parent

    return out_mother_pdg
Exemple #8
0
def add_jec_variables(jets, event_rho):
    jets["pt_raw"] = (1 - jets.rawFactor) * jets.pt
    jets["mass_raw"] = (1 - jets.rawFactor) * jets.mass
    jets["pt_gen"] = ak.values_astype(ak.fill_none(jets.matched_gen.pt, 0),
                                      np.float32)
    jets["event_rho"] = ak.broadcast_arrays(event_rho, jets.pt)[0]
    return jets
Exemple #9
0
 def run():
     events = NanoEventsFactory.from_root(
         os.path.abspath("tests/samples/nano_dy.root"),
         persistent_cache=array_log,
     ).events()
     jets = events.Jet
     met = events.MET
     jets["pt_raw"] = (1 - jets["rawFactor"]) * jets["pt"]
     jets["mass_raw"] = (1 - jets["rawFactor"]) * jets["mass"]
     jets["pt_gen"] = ak.values_astype(
         ak.fill_none(jets.matched_gen.pt, 0.0), np.float32)
     jets["rho"] = ak.broadcast_arrays(events.fixedGridRhoFastjetAll,
                                       jets.pt)[0]
     jec_cache = cachetools.Cache(np.inf)
     weakref.finalize(jec_cache, jec_finalized.set)
     corrected_jets = jet_factory.build(jets, lazy_cache=jec_cache)
     corrected_met = met_factory.build(met,
                                       corrected_jets,
                                       lazy_cache=jec_cache)
     print(corrected_met.pt_orig)
     print(corrected_met.pt)
     for unc in jet_factory.uncertainties() + met_factory.uncertainties():
         print(unc, corrected_met[unc].up.pt)
         print(unc, corrected_met[unc].down.pt)
     for unc in jet_factory.uncertainties():
         print(unc, corrected_jets[unc].up.pt)
     print("Finalized:", array_log.finalized)
def set_genZ(events, genBranches, selection_options, debug):
    if genBranches is None:
        events["genZ_decayMode"] = ak.from_numpy(-1 * numpy.ones(len(events)))
    else:
        electron_idxs = abs(genBranches.pdgId) == 11
        muon_idxs = abs(genBranches.pdgId) == 13
        tau_idxs = abs(genBranches.pdgId) == 15

        motherOfElectrons = genBranches.genPartIdxMother[electron_idxs]
        motherOfMuons = genBranches.genPartIdxMother[muon_idxs]
        motherOfTaus = genBranches.genPartIdxMother[tau_idxs]

        ZToEleEvents = ak.sum(
            (genBranches.pdgId[motherOfElectrons] == 23), axis=1) > 0
        ZToMuEvents = ak.sum(
            (genBranches.pdgId[motherOfMuons] == 23), axis=1) > 0
        ZToTauEvents = ak.sum(
            (genBranches.pdgId[motherOfTaus] == 23), axis=1) > 0

        # W decay dudes
        WToEEvents = ak.sum(
            (abs(genBranches.pdgId[motherOfElectrons]) == 24), axis=1) > 0
        WToMuEvents = ak.sum(
            (abs(genBranches.pdgId[motherOfMuons]) == 24), axis=1) > 0
        WToTauEvents = ak.sum(
            (abs(genBranches.pdgId[motherOfTaus]) == 24), axis=1) > 0

        events["genZ_decayMode"] = ak.from_numpy(
            numpy.zeros(len(events))
        ) + 1 * ZToEleEvents + 2 * ZToMuEvents + 3 * ZToTauEvents + 4 * WToEEvents + 5 * WToMuEvents + 6 * WToTauEvents
        events["tau_motherID"] = ak.fill_none(
            ak.firsts(genBranches.pdgId[motherOfTaus]), 0)
    return events
Exemple #11
0
 def combine(eff, sf):
     # tagged SF = SF*eff / eff = SF
     tagged_sf = awkward.prod(sf[passbtag], axis=-1)
     # untagged SF = (1 - SF*eff) / (1 - eff)
     untagged_sf = awkward.prod(((1 - sf * eff) / (1 - eff))[~passbtag],
                                axis=-1)
     return awkward.fill_none(tagged_sf * untagged_sf,
                              1.)  # TODO: move None guard to coffea
def apply_roccor(df, rochester, is_mc):
    if is_mc:
        hasgen = ~np.isnan(ak.fill_none(df.Muon.matched_gen.pt, np.nan))
        mc_rand = np.random.rand(*ak.to_numpy(ak.flatten(df.Muon.pt)).shape)
        mc_rand = ak.unflatten(mc_rand, ak.num(df.Muon.pt, axis=1))

        corrections = np.array(ak.flatten(ak.ones_like(df.Muon.pt)))
        errors = np.array(ak.flatten(ak.ones_like(df.Muon.pt)))
        mc_kspread = rochester.kSpreadMC(
            df.Muon.charge[hasgen],
            df.Muon.pt[hasgen],
            df.Muon.eta[hasgen],
            df.Muon.phi[hasgen],
            df.Muon.matched_gen.pt[hasgen],
        )

        mc_ksmear = rochester.kSmearMC(
            df.Muon.charge[~hasgen],
            df.Muon.pt[~hasgen],
            df.Muon.eta[~hasgen],
            df.Muon.phi[~hasgen],
            df.Muon.nTrackerLayers[~hasgen],
            mc_rand[~hasgen],
        )

        errspread = rochester.kSpreadMCerror(
            df.Muon.charge[hasgen],
            df.Muon.pt[hasgen],
            df.Muon.eta[hasgen],
            df.Muon.phi[hasgen],
            df.Muon.matched_gen.pt[hasgen],
        )
        errsmear = rochester.kSmearMCerror(
            df.Muon.charge[~hasgen],
            df.Muon.pt[~hasgen],
            df.Muon.eta[~hasgen],
            df.Muon.phi[~hasgen],
            df.Muon.nTrackerLayers[~hasgen],
            mc_rand[~hasgen],
        )
        hasgen_flat = np.array(ak.flatten(hasgen))
        corrections[hasgen_flat] = np.array(ak.flatten(mc_kspread))
        corrections[~hasgen_flat] = np.array(ak.flatten(mc_ksmear))
        errors[hasgen_flat] = np.array(ak.flatten(errspread))
        errors[~hasgen_flat] = np.array(ak.flatten(errsmear))

        corrections = ak.unflatten(corrections, ak.num(df.Muon.pt, axis=1))
        errors = ak.unflatten(errors, ak.num(df.Muon.pt, axis=1))

    else:
        corrections = rochester.kScaleDT(df.Muon.charge, df.Muon.pt,
                                         df.Muon.eta, df.Muon.phi)
        errors = rochester.kScaleDTerror(df.Muon.charge, df.Muon.pt,
                                         df.Muon.eta, df.Muon.phi)

    df["Muon", "pt_roch"] = df.Muon.pt * corrections
    df["Muon", "pt_roch_up"] = df.Muon.pt_roch + df.Muon.pt * errors
    df["Muon", "pt_roch_down"] = df.Muon.pt_roch - df.Muon.pt * errors
Exemple #13
0
def test():
    first = ak.from_numpy(np.array([1, 2, 3]))
    deltas = ak.Array([[1, 2], [1, 2], [1, 2, 3]])
    assert np.hstack(
        (first[:,
               np.newaxis], ak.fill_none(ak.pad_none(deltas, 3, axis=-1),
                                         999))).tolist() == [[1, 1, 2, 999],
                                                             [2, 1, 2, 999],
                                                             [3, 1, 2, 3]]
Exemple #14
0
def prepare_jets(df, is_mc):
    # Initialize missing fields (needed for JEC)
    df["Jet", "pt_raw"] = (1 - df.Jet.rawFactor) * df.Jet.pt
    df["Jet", "mass_raw"] = (1 - df.Jet.rawFactor) * df.Jet.mass
    df["Jet", "rho"] = ak.broadcast_arrays(df.fixedGridRhoFastjetAll,
                                           df.Jet.pt)[0]

    if is_mc:
        df["Jet",
           "pt_gen"] = ak.values_astype(ak.fill_none(df.Jet.matched_gen.pt, 0),
                                        np.float32)
Exemple #15
0
def studyAcc(ifile, title, acceptances_dict, mass):
    dq_events = getData(ifile, "Truth")
    # choosing the nevts for denominator (because all files have 10000 evts)
    den = len(dq_events)

    # choosing 500 evts for denominator
    den500 = False
    if den500:
        dq_events = dq_events[:500]
        den = 500

    dq_showers = dq_events["Showers"]
    dq_electrons = dq_events["Electrons"]

    dq_sh_z = ak.fill_none(ak.pad_none(dq_showers.sz, 2, axis=1), 0)
    dq_sh_e = ak.fill_none(ak.pad_none(dq_showers.sedep_ecal, 2, axis=1), -1)
    dq_e_ge = ak.fill_none(ak.pad_none(dq_electrons.ge, 2, axis=1), -1)

    shower_zero_mask = ak.any(dq_sh_e == 0, axis=1)
    shower_zero_index = np.where(shower_zero_mask)

    eshower_mask = ak.all(dq_sh_e > 0.1 * dq_e_ge, axis=1)
    eshower_index = np.where(eshower_mask)

    masks = {'shower_zero': shower_zero_index, 'eshower': eshower_index}

    dq_evts = dq_events[ak.all(dq_e_ge > -1, axis=1)]
    # print(acceptances_dict)
    # we can print the mass, the number of events with gen e-, the number of events in the sample, and the denominator
    print(mass, len(dq_evts), len(dq_events), den)
    for maskstr, m in masks.items():
        if maskstr in acceptances_dict:
            acceptances_dict[maskstr].append(len(m[0]) / den)
        else:
            acceptances_dict[maskstr] = [len(m[0]) / den]
        #print(maskstr+':', len(m[0])/den)

    return acceptances_dict
Exemple #16
0
def local2global(stack):
    """Turn jagged local index into global index

    Signature: index,target_offsets,!local2global
    Outputs a content array with same shape as index content
    """
    target_offsets = stack.pop()
    index = stack.pop()
    index = index.mask[index >= 0] + target_offsets[:-1]
    index = index.mask[index < target_offsets[1:]]
    out = numpy.array(awkward.flatten(awkward.fill_none(index, -1)))
    if out.dtype != numpy.int64:
        raise RuntimeError
    stack.append(out)
Exemple #17
0
 def get_vpt(check_offshell=False):
     """Only the leptonic samples have no resonance in the decay tree, and only
     when M is beyond the configured Breit-Wigner cutoff (usually 15*width)
     """
     boson = ak.firsts(
         genpart[((genpart.pdgId == 23) | (abs(genpart.pdgId) == 24))
                 & genpart.hasFlags(["fromHardProcess", "isLastCopy"])])
     if check_offshell:
         offshell = genpart[
             genpart.hasFlags(["fromHardProcess", "isLastCopy"])
             & ak.is_none(boson)
             & (abs(genpart.pdgId) >= 11) &
             (abs(genpart.pdgId) <= 16)].sum()
         return ak.where(ak.is_none(boson.pt), offshell.pt, boson.pt)
     return np.array(ak.fill_none(boson.pt, 0.))
Exemple #18
0
    def matchJets(self, obj, jet, deltaRCut=0.4):

        combs = ak.cartesian([obj, jet], nested=True)

        jet_index = ak.local_index(delta_r(
            combs['0'], combs['1']))[delta_r(combs['0'], combs['1']) < 0.4]
        jet_index_pad = ak.flatten(ak.fill_none(
            ak.pad_none(jet_index, target=1, clip=True, axis=2), 0),
                                   axis=2)

        mask = ak.num(jet_index,
                      axis=2) > 0  # a mask for obj with a matched jet
        mask_match = mask * 1 + ~mask * 0
        mask_nomatch = mask * 0 + ~mask * 1

        return jet_index_pad, mask_match, mask_nomatch
Exemple #19
0
def test():
    array = ak.Array([{"x": 1}, {"x": 2}, None, {"x": 3}])
    assert ak.fill_none(array, array[0]).tolist() == [
        {
            "x": 1
        },
        {
            "x": 2
        },
        {
            "x": 1
        },
        {
            "x": 3
        },
    ]
Exemple #20
0
def fsr_recovery(df):
    mask = (
        (df.Muon.fsrPhotonIdx >= 0)
        & (df.Muon.matched_fsrPhoton.relIso03 < 1.8)
        & (df.Muon.matched_fsrPhoton.dROverEt2 < 0.012)
        & (df.Muon.matched_fsrPhoton.pt / df.Muon.pt < 0.4)
        & (abs(df.Muon.matched_fsrPhoton.eta) < 2.4)
    )
    mask = ak.fill_none(mask, False)

    px = ak.zeros_like(df.Muon.pt)
    py = ak.zeros_like(df.Muon.pt)
    pz = ak.zeros_like(df.Muon.pt)
    e = ak.zeros_like(df.Muon.pt)

    fsr = {
        "pt": df.Muon.matched_fsrPhoton.pt,
        "eta": df.Muon.matched_fsrPhoton.eta,
        "phi": df.Muon.matched_fsrPhoton.phi,
        "mass": 0.0,
    }

    for obj in [df.Muon, fsr]:
        px_ = obj["pt"] * np.cos(obj["phi"])
        py_ = obj["pt"] * np.sin(obj["phi"])
        pz_ = obj["pt"] * np.sinh(obj["eta"])
        e_ = np.sqrt(px_**2 + py_**2 + pz_**2 + obj["mass"] ** 2)

        px = px + px_
        py = py + py_
        pz = pz + pz_
        e = e + e_

    pt = np.sqrt(px**2 + py**2)
    eta = np.arcsinh(pz / pt)
    phi = np.arctan2(py, px)
    mass = np.sqrt(e**2 - px**2 - py**2 - pz**2)
    iso = (df.Muon.pfRelIso04_all * df.Muon.pt - df.Muon.matched_fsrPhoton.pt) / pt

    df["Muon", "pt_fsr"] = ak.where(mask, pt, df.Muon.pt)
    df["Muon", "eta_fsr"] = ak.where(mask, eta, df.Muon.eta)
    df["Muon", "phi_fsr"] = ak.where(mask, phi, df.Muon.phi)
    df["Muon", "mass_fsr"] = ak.where(mask, mass, df.Muon.mass)
    df["Muon", "iso_fsr"] = ak.where(mask, iso, df.Muon.pfRelIso04_all)
    return mask
Exemple #21
0
def TTsemileptonicmatch(events):

    dataset = events.metadata['dataset']
    if 'TTToSemiLeptonic' not in dataset:
        return np.zeros(len(events.FatJet.pt), dtype=bool)

    child = events.GenPart[
        (abs(events.GenPart.pdgId) == 24)
        & events.GenPart.hasFlags(["isLastCopy", "fromHardProcess"])].children
    fatjet = ak.firsts(events.FatJet)
    n_matched_quarks = np.zeros(len(fatjet))

    for ii in [0, 1]:
        for jj in [0, 1]:
            n_matched_quarks = n_matched_quarks + ak.fill_none(
                (fatjet.delta_r2(child[:, ii, jj]) < 0.8**2) &
                (abs(child[:, ii, jj].pdgId) < 6), 0.)
    print(n_matched_quarks)
    return n_matched_quarks
    def process_shift(self, events, shift_name):
        dataset = events.metadata['dataset']
        isRealData = not hasattr(events, "genWeight")
        selection = PackedSelection()
        weights = Weights(len(events), storeIndividual=True)
        output = self.make_output()
        if shift_name is None and not isRealData:
            output['sumw'] = ak.sum(events.genWeight)

        if isRealData or self._newTrigger:
            trigger = np.zeros(len(events), dtype='bool')
            for t in self._triggers[self._year]:
                if t in events.HLT.fields:
                    trigger = trigger | events.HLT[t]
            selection.add('trigger', trigger)
            del trigger
        else:
            selection.add('trigger', np.ones(len(events), dtype='bool'))

        if isRealData:
            selection.add(
                'lumimask', lumiMasks[self._year](events.run,
                                                  events.luminosityBlock))
        else:
            selection.add('lumimask', np.ones(len(events), dtype='bool'))

        if isRealData and self._skipRunB and self._year == '2017':
            selection.add('dropB', events.run > 299329)
        else:
            selection.add('dropB', np.ones(len(events), dtype='bool'))

        if isRealData:
            trigger = np.zeros(len(events), dtype='bool')
            for t in self._muontriggers[self._year]:
                if t in events.HLT.fields:
                    trigger |= np.array(events.HLT[t])
            selection.add('muontrigger', trigger)
            del trigger
        else:
            selection.add('muontrigger', np.ones(len(events), dtype='bool'))

        metfilter = np.ones(len(events), dtype='bool')
        for flag in self._met_filters[
                self._year]['data' if isRealData else 'mc']:
            metfilter &= np.array(events.Flag[flag])
        selection.add('metfilter', metfilter)
        del metfilter

        fatjets = events.FatJet
        fatjets['msdcorr'] = corrected_msoftdrop(fatjets)
        fatjets['qcdrho'] = 2 * np.log(fatjets.msdcorr / fatjets.pt)
        fatjets['n2ddt'] = fatjets.n2b1 - n2ddt_shift(fatjets, year=self._year)
        fatjets['msdcorr_full'] = fatjets['msdcorr'] * self._msdSF[self._year]

        candidatejet = fatjets[
            # https://github.com/DAZSLE/BaconAnalyzer/blob/master/Analyzer/src/VJetLoader.cc#L269
            (fatjets.pt > 200)
            & (abs(fatjets.eta) < 2.5)
            & fatjets.isTight  # this is loose in sampleContainer
        ]

        candidatejet = candidatejet[:, :
                                    2]  # Only consider first two to match generators
        if self._jet_arbitration == 'pt':
            candidatejet = ak.firsts(candidatejet)
        elif self._jet_arbitration == 'mass':
            candidatejet = ak.firsts(candidatejet[ak.argmax(
                candidatejet.msdcorr, axis=1, keepdims=True)])
        elif self._jet_arbitration == 'n2':
            candidatejet = ak.firsts(candidatejet[ak.argmin(candidatejet.n2ddt,
                                                            axis=1,
                                                            keepdims=True)])
        elif self._jet_arbitration == 'ddb':
            candidatejet = ak.firsts(candidatejet[ak.argmax(
                candidatejet.btagDDBvLV2, axis=1, keepdims=True)])
        elif self._jet_arbitration == 'ddc':
            candidatejet = ak.firsts(candidatejet[ak.argmax(
                candidatejet.btagDDCvLV2, axis=1, keepdims=True)])
        else:
            raise RuntimeError("Unknown candidate jet arbitration")

        if self._tagger == 'v1':
            bvl = candidatejet.btagDDBvL
            cvl = candidatejet.btagDDCvL
            cvb = candidatejet.btagDDCvB
        elif self._tagger == 'v2':
            bvl = candidatejet.btagDDBvLV2
            cvl = candidatejet.btagDDCvLV2
            cvb = candidatejet.btagDDCvBV2
        elif self._tagger == 'v3':
            bvl = candidatejet.particleNetMD_Xbb
            cvl = candidatejet.particleNetMD_Xcc / (
                1 - candidatejet.particleNetMD_Xbb)
            cvb = candidatejet.particleNetMD_Xcc / (
                candidatejet.particleNetMD_Xcc +
                candidatejet.particleNetMD_Xbb)

        elif self._tagger == 'v4':
            bvl = candidatejet.particleNetMD_Xbb
            cvl = candidatejet.btagDDCvLV2
            cvb = candidatejet.particleNetMD_Xcc / (
                candidatejet.particleNetMD_Xcc +
                candidatejet.particleNetMD_Xbb)
        else:
            raise ValueError("Not an option")

        selection.add('minjetkin', (candidatejet.pt >= 450)
                      & (candidatejet.pt < 1200)
                      & (candidatejet.msdcorr >= 40.)
                      & (candidatejet.msdcorr < 201.)
                      & (abs(candidatejet.eta) < 2.5))
        selection.add('_strict_mass', (candidatejet.msdcorr > 85) &
                      (candidatejet.msdcorr < 130))
        selection.add('_high_score', cvl > 0.8)
        selection.add('minjetkinmu', (candidatejet.pt >= 400)
                      & (candidatejet.pt < 1200)
                      & (candidatejet.msdcorr >= 40.)
                      & (candidatejet.msdcorr < 201.)
                      & (abs(candidatejet.eta) < 2.5))
        selection.add('minjetkinw', (candidatejet.pt >= 200)
                      & (candidatejet.pt < 1200)
                      & (candidatejet.msdcorr >= 40.)
                      & (candidatejet.msdcorr < 201.)
                      & (abs(candidatejet.eta) < 2.5))
        selection.add('jetid', candidatejet.isTight)
        selection.add('n2ddt', (candidatejet.n2ddt < 0.))
        if not self._tagger == 'v2':
            selection.add('ddbpass', (bvl >= 0.89))
            selection.add('ddcpass', (cvl >= 0.83))
            selection.add('ddcvbpass', (cvb >= 0.2))
        else:
            selection.add('ddbpass', (bvl >= 0.7))
            selection.add('ddcpass', (cvl >= 0.45))
            selection.add('ddcvbpass', (cvb >= 0.03))

        jets = events.Jet
        jets = jets[(jets.pt > 30.) & (abs(jets.eta) < 2.5) & jets.isTight]
        # only consider first 4 jets to be consistent with old framework
        jets = jets[:, :4]
        dphi = abs(jets.delta_phi(candidatejet))
        selection.add(
            'antiak4btagMediumOppHem',
            ak.max(jets[dphi > np.pi / 2][self._ak4tagBranch],
                   axis=1,
                   mask_identity=False) <
            BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium'])
        ak4_away = jets[dphi > 0.8]
        selection.add(
            'ak4btagMedium08',
            ak.max(ak4_away[self._ak4tagBranch], axis=1, mask_identity=False) >
            BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium'])

        met = events.MET
        selection.add('met', met.pt < 140.)

        goodmuon = ((events.Muon.pt > 10)
                    & (abs(events.Muon.eta) < 2.4)
                    & (events.Muon.pfRelIso04_all < 0.25)
                    & events.Muon.looseId)
        nmuons = ak.sum(goodmuon, axis=1)
        leadingmuon = ak.firsts(events.Muon[goodmuon])

        if self._looseTau:
            goodelectron = ((events.Electron.pt > 10)
                            & (abs(events.Electron.eta) < 2.5)
                            &
                            (events.Electron.cutBased >= events.Electron.VETO))
            nelectrons = ak.sum(goodelectron, axis=1)

            ntaus = ak.sum(
                ((events.Tau.pt > 20)
                 & (abs(events.Tau.eta) < 2.3)
                 & events.Tau.idDecayMode
                 & ((events.Tau.idMVAoldDM2017v2 & 2) != 0)
                 & ak.all(events.Tau.metric_table(events.Muon[goodmuon]) > 0.4,
                          axis=2)
                 & ak.all(events.Tau.metric_table(
                     events.Electron[goodelectron]) > 0.4,
                          axis=2)),
                axis=1,
            )
        else:
            goodelectron = (
                (events.Electron.pt > 10)
                & (abs(events.Electron.eta) < 2.5)
                & (events.Electron.cutBased >= events.Electron.LOOSE))
            nelectrons = ak.sum(goodelectron, axis=1)

            ntaus = ak.sum(
                (events.Tau.pt > 20)
                &
                events.Tau.idDecayMode  # bacon iso looser than Nano selection
                & ak.all(events.Tau.metric_table(events.Muon[goodmuon]) > 0.4,
                         axis=2)
                & ak.all(events.Tau.metric_table(events.Electron[goodelectron])
                         > 0.4,
                         axis=2),
                axis=1,
            )

        selection.add('noleptons',
                      (nmuons == 0) & (nelectrons == 0) & (ntaus == 0))
        selection.add('onemuon',
                      (nmuons == 1) & (nelectrons == 0) & (ntaus == 0))
        selection.add('muonkin',
                      (leadingmuon.pt > 55.) & (abs(leadingmuon.eta) < 2.1))
        selection.add('muonDphiAK8',
                      abs(leadingmuon.delta_phi(candidatejet)) > 2 * np.pi / 3)

        # W-Tag (Tag and Probe)
        # tag side
        selection.add(
            'ak4btagMediumOppHem',
            ak.max(jets[dphi > np.pi / 2][self._ak4tagBranch],
                   axis=1,
                   mask_identity=False) >
            BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium'])
        selection.add('met40p', met.pt > 40.)
        selection.add('tightMuon',
                      (leadingmuon.tightId) & (leadingmuon.pt > 53.))
        # selection.add('ptrecoW', (leadingmuon + met).pt > 250.)
        selection.add('ptrecoW200', (leadingmuon + met).pt > 200.)
        selection.add(
            'ak4btagNearMu',
            leadingmuon.delta_r(leadingmuon.nearest(ak4_away, axis=None)) <
            2.0)
        _bjets = jets[self._ak4tagBranch] > BTagEfficiency.btagWPs[
            self._ak4tagger][self._year]['medium']
        # _nearAK8 = jets.delta_r(candidatejet)  < 0.8
        # _nearMu = jets.delta_r(ak.firsts(events.Muon))  < 0.3
        # selection.add('ak4btagOld', ak.sum(_bjets & ~_nearAK8 & ~_nearMu, axis=1) >= 1)
        _nearAK8 = jets.delta_r(candidatejet) < 0.8
        _nearMu = jets.delta_r(leadingmuon) < 0.3
        selection.add('ak4btagOld',
                      ak.sum(_bjets & ~_nearAK8 & ~_nearMu, axis=1) >= 1)

        # _nearAK8 = jets.delta_r(candidatejet)  < 0.8
        # _nearMu = jets.delta_r(candidatejet.nearest(events.Muon[goodmuon], axis=None))  < 0.3
        # selection.add('ak4btagNew', ak.sum(_bjets & ~_nearAK8 & ~_nearMu, axis=1) >= 1)

        # probe side
        selection.add('minWjetpteta',
                      (candidatejet.pt >= 200) & (abs(candidatejet.eta) < 2.4))
        # selection.add('noNearMuon', candidatejet.delta_r(candidatejet.nearest(events.Muon[goodmuon], axis=None)) > 1.0)
        selection.add('noNearMuon', candidatejet.delta_r(leadingmuon) > 1.0)
        #####

        if isRealData:
            genflavor = ak.zeros_like(candidatejet.pt)
        else:
            if 'HToCC' in dataset or 'HToBB' in dataset:
                if self._ewkHcorr:
                    add_HiggsEW_kFactors(weights, events.GenPart, dataset)

            weights.add('genweight', events.genWeight)
            if "PSWeight" in events.fields:
                add_ps_weight(weights, events.PSWeight)
            else:
                add_ps_weight(weights, None)
            if "LHEPdfWeight" in events.fields:
                add_pdf_weight(weights, events.LHEPdfWeight)
            else:
                add_pdf_weight(weights, None)
            if "LHEScaleWeight" in events.fields:
                add_scalevar_7pt(weights, events.LHEScaleWeight)
                add_scalevar_3pt(weights, events.LHEScaleWeight)
            else:
                add_scalevar_7pt(weights, [])
                add_scalevar_3pt(weights, [])

            add_pileup_weight(weights, events.Pileup.nPU, self._year, dataset)
            bosons = getBosons(events.GenPart)
            matchedBoson = candidatejet.nearest(bosons,
                                                axis=None,
                                                threshold=0.8)
            if self._tightMatch:
                match_mask = (
                    (candidatejet.pt - matchedBoson.pt) / matchedBoson.pt <
                    0.5) & ((candidatejet.msdcorr - matchedBoson.mass) /
                            matchedBoson.mass < 0.3)
                selmatchedBoson = ak.mask(matchedBoson, match_mask)
                genflavor = bosonFlavor(selmatchedBoson)
            else:
                genflavor = bosonFlavor(matchedBoson)
            genBosonPt = ak.fill_none(ak.firsts(bosons.pt), 0)
            if self._newVjetsKfactor:
                add_VJets_kFactors(weights, events.GenPart, dataset)
            else:
                add_VJets_NLOkFactor(weights, genBosonPt, self._year, dataset)
            if shift_name is None:
                output['btagWeight'].fill(val=self._btagSF.addBtagWeight(
                    weights, ak4_away, self._ak4tagBranch))
            if self._nnlops_rew and dataset in [
                    'GluGluHToCC_M125_13TeV_powheg_pythia8'
            ]:
                weights.add('minlo_rew',
                            powheg_to_nnlops(ak.to_numpy(genBosonPt)))

            if self._newTrigger:
                add_jetTriggerSF(
                    weights, ak.firsts(fatjets),
                    self._year if not self._skipRunB else f'{self._year}CDEF',
                    selection)
            else:
                add_jetTriggerWeight(weights, candidatejet.msdcorr,
                                     candidatejet.pt, self._year)

            add_mutriggerSF(weights, leadingmuon, self._year, selection)
            add_mucorrectionsSF(weights, leadingmuon, self._year, selection)

            if self._year in ("2016", "2017"):
                weights.add("L1Prefiring", events.L1PreFiringWeight.Nom,
                            events.L1PreFiringWeight.Up,
                            events.L1PreFiringWeight.Dn)

            logger.debug("Weight statistics: %r" % weights.weightStatistics)

        msd_matched = candidatejet.msdcorr * self._msdSF[self._year] * (
            genflavor > 0) + candidatejet.msdcorr * (genflavor == 0)

        regions = {
            'signal': [
                'noleptons', 'minjetkin', 'met', 'metfilter', 'jetid',
                'antiak4btagMediumOppHem', 'n2ddt', 'trigger', 'lumimask'
            ],
            'signal_noddt': [
                'noleptons', 'minjetkin', 'met', 'jetid',
                'antiak4btagMediumOppHem', 'trigger', 'lumimask', 'metfilter'
            ],
            # 'muoncontrol': ['minjetkinmu', 'jetid', 'n2ddt', 'ak4btagMedium08', 'onemuon', 'muonkin', 'muonDphiAK8', 'muontrigger', 'lumimask', 'metfilter'],
            'muoncontrol': [
                'onemuon', 'muonkin', 'muonDphiAK8', 'metfilter',
                'minjetkinmu', 'jetid', 'ak4btagMedium08', 'n2ddt',
                'muontrigger', 'lumimask'
            ],
            'muoncontrol_noddt': [
                'onemuon', 'muonkin', 'muonDphiAK8', 'jetid', 'metfilter',
                'minjetkinmu', 'jetid', 'ak4btagMedium08', 'muontrigger',
                'lumimask'
            ],
            'wtag': [
                'onemuon', 'tightMuon', 'minjetkinw', 'jetid', 'met40p',
                'metfilter', 'ptrecoW200', 'ak4btagOld', 'muontrigger',
                'lumimask'
            ],
            'wtag0': [
                'onemuon', 'tightMuon', 'met40p', 'metfilter', 'ptrecoW200',
                'ak4btagOld', 'muontrigger', 'lumimask'
            ],
            'wtag2': [
                'onemuon', 'tightMuon', 'minjetkinw', 'jetid',
                'ak4btagMediumOppHem', 'met40p', 'metfilter', 'ptrecoW200',
                'ak4btagOld', 'muontrigger', 'lumimask'
            ],
            'noselection': [],
        }

        def normalize(val, cut):
            if cut is None:
                ar = ak.to_numpy(ak.fill_none(val, np.nan))
                return ar
            else:
                ar = ak.to_numpy(ak.fill_none(val[cut], np.nan))
                return ar

        import time
        tic = time.time()
        if shift_name is None:
            for region, cuts in regions.items():
                allcuts = set([])
                cut = selection.all(*allcuts)
                output['cutflow_msd'].fill(region=region,
                                           genflavor=normalize(
                                               genflavor, None),
                                           cut=0,
                                           weight=weights.weight(),
                                           msd=normalize(msd_matched, None))
                output['cutflow_eta'].fill(region=region,
                                           genflavor=normalize(genflavor, cut),
                                           cut=0,
                                           weight=weights.weight()[cut],
                                           eta=normalize(
                                               candidatejet.eta, cut))
                output['cutflow_pt'].fill(region=region,
                                          genflavor=normalize(genflavor, cut),
                                          cut=0,
                                          weight=weights.weight()[cut],
                                          pt=normalize(candidatejet.pt, cut))
                for i, cut in enumerate(cuts + ['ddcvbpass', 'ddcpass']):
                    allcuts.add(cut)
                    cut = selection.all(*allcuts)
                    output['cutflow_msd'].fill(region=region,
                                               genflavor=normalize(
                                                   genflavor, cut),
                                               cut=i + 1,
                                               weight=weights.weight()[cut],
                                               msd=normalize(msd_matched, cut))
                    output['cutflow_eta'].fill(
                        region=region,
                        genflavor=normalize(genflavor, cut),
                        cut=i + 1,
                        weight=weights.weight()[cut],
                        eta=normalize(candidatejet.eta, cut))
                    output['cutflow_pt'].fill(
                        region=region,
                        genflavor=normalize(genflavor, cut),
                        cut=i + 1,
                        weight=weights.weight()[cut],
                        pt=normalize(candidatejet.pt, cut))

                    if self._evtVizInfo and 'ddcpass' in allcuts and isRealData and region == 'signal':
                        if 'event' not in events.fields:
                            continue
                        _cut = selection.all(*allcuts, '_strict_mass',
                                             '_high_score')
                        # _cut = selection.all('_strict_mass'')
                        output['to_check'][
                            'mass'] += processor.column_accumulator(
                                normalize(msd_matched, _cut))
                        nfatjet = ak.sum(
                            ((fatjets.pt > 200) &
                             (abs(fatjets.eta) < 2.5) & fatjets.isTight),
                            axis=1)
                        output['to_check'][
                            'njet'] += processor.column_accumulator(
                                normalize(nfatjet, _cut))
                        output['to_check'][
                            'fname'] += processor.column_accumulator(
                                np.array([events.metadata['filename']] *
                                         len(normalize(msd_matched, _cut))))
                        output['to_check'][
                            'event'] += processor.column_accumulator(
                                normalize(events.event, _cut))
                        output['to_check'][
                            'luminosityBlock'] += processor.column_accumulator(
                                normalize(events.luminosityBlock, _cut))
                        output['to_check'][
                            'run'] += processor.column_accumulator(
                                normalize(events.run, _cut))

        if shift_name is None:
            systematics = [None] + list(weights.variations)
        else:
            systematics = [shift_name]

        def fill(region, systematic, wmod=None):
            selections = regions[region]
            cut = selection.all(*selections)
            sname = 'nominal' if systematic is None else systematic
            if wmod is None:
                if systematic in weights.variations:
                    weight = weights.weight(modifier=systematic)[cut]
                else:
                    weight = weights.weight()[cut]
            else:
                weight = weights.weight()[cut] * wmod[cut]

            output['templates'].fill(
                region=region,
                systematic=sname,
                runid=runmap(events.run)[cut],
                genflavor=normalize(genflavor, cut),
                pt=normalize(candidatejet.pt, cut),
                msd=normalize(msd_matched, cut),
                ddb=normalize(bvl, cut),
                ddc=normalize(cvl, cut),
                ddcvb=normalize(cvb, cut),
                weight=weight,
            )
            if region in [
                    'wtag', 'wtag0', 'wtag2', 'wtag3', 'wtag4', 'wtag5',
                    'wtag6', 'wtag7', 'noselection'
            ]:  # and sname in ['nominal', 'pileup_weightDown', 'pileup_weightUp', 'jet_triggerDown', 'jet_triggerUp']:
                output['wtag'].fill(
                    region=region,
                    systematic=sname,
                    genflavor=normalize(genflavor, cut),
                    pt=normalize(candidatejet.pt, cut),
                    msd=normalize(msd_matched, cut),
                    n2ddt=normalize(candidatejet.n2ddt, cut),
                    ddc=normalize(cvl, cut),
                    ddcvb=normalize(cvb, cut),
                    weight=weight,
                )
            # if region in ['signal', 'noselection']:
            #     output['etaphi'].fill(
            #         region=region,
            #         systematic=sname,
            #         runid=runmap(events.run)[cut],
            #         genflavor=normalize(genflavor, cut),
            #         pt=normalize(candidatejet.pt, cut),
            #         eta=normalize(candidatejet.eta, cut),
            #         phi=normalize(candidatejet.phi, cut),
            #         ddc=normalize(cvl, cut),
            #         ddcvb=normalize(cvb, cut),
            #     ),
            if not isRealData:
                if wmod is not None:
                    _custom_weight = events.genWeight[cut] * wmod[cut]
                else:
                    _custom_weight = np.ones_like(weight)
                output['genresponse_noweight'].fill(
                    region=region,
                    systematic=sname,
                    pt=normalize(candidatejet.pt, cut),
                    genpt=normalize(genBosonPt, cut),
                    weight=_custom_weight,
                )

                output['genresponse'].fill(
                    region=region,
                    systematic=sname,
                    pt=normalize(candidatejet.pt, cut),
                    genpt=normalize(genBosonPt, cut),
                    weight=weight,
                )
            if systematic is None:
                output['signal_opt'].fill(
                    region=region,
                    genflavor=normalize(genflavor, cut),
                    ddc=normalize(cvl, cut),
                    ddcvb=normalize(cvb, cut),
                    msd=normalize(msd_matched, cut),
                    weight=weight,
                )
                output['signal_optb'].fill(
                    region=region,
                    genflavor=normalize(genflavor, cut),
                    ddb=normalize(bvl, cut),
                    msd=normalize(msd_matched, cut),
                    weight=weight,
                )

        for region in regions:
            cut = selection.all(*(set(regions[region]) - {'n2ddt'}))
            if shift_name is None:
                output['nminus1_n2ddt'].fill(
                    region=region,
                    n2ddt=normalize(candidatejet.n2ddt, cut),
                    weight=weights.weight()[cut],
                )
            for systematic in systematics:
                if isRealData and systematic is not None:
                    continue
                fill(region, systematic)
            if shift_name is None and 'GluGluH' in dataset and 'LHEWeight' in events.fields:
                for i in range(9):
                    fill(region, 'LHEScale_%d' % i, events.LHEScaleWeight[:,
                                                                          i])
                for c in events.LHEWeight.fields[1:]:
                    fill(region, 'LHEWeight_%s' % c, events.LHEWeight[c])

        toc = time.time()
        output["filltime"] = toc - tic
        if shift_name is None:
            output["weightStats"] = weights.weightStatistics
        return {dataset: output}
Exemple #23
0
    def __init__(self, ev, obj, wp, year=2018, verbose=0):
        self.obj = obj
        self.wp = wp
        if self.wp == None:
            self.selection_dict = {}
        else:
            self.selection_dict = obj_def[self.obj][self.wp]

        self.v = verbose
        self.year = year

        id_level = None
        if wp.lower().count('veto') or wp.lower().count('loose'):
            id_level = 0
        elif wp.lower().count('fake'):
            id_level = 1
        elif wp.lower().count('tight'):
            id_level = 2

        if self.obj == "Muon":
            # collections are already there, so we just need to calculate missing ones
            ev['Muon', 'absMiniIso'] = ev.Muon.miniPFRelIso_all * ev.Muon.pt
            ev['Muon', 'ptErrRel'] = ev.Muon.ptErr / ev.Muon.pt

            # this is what we are using:
            # - jetRelIso if the matched jet is within deltaR<0.4, pfRelIso03_all otherwise
            # - btagDeepFlavB discriminator of the matched jet if jet is within deltaR<0.4, 0 otherwise
            # - pt_cone = 0.9*pt of matched jet if jet is within deltaR<0.4, pt/(pt+iso) otherwise

            mask_close = (ak.fill_none(ev.Muon.delta_r(ev.Muon.matched_jet),
                                       99) < 0.4) * 1
            mask_far = ~(ak.fill_none(ev.Muon.delta_r(ev.Muon.matched_jet), 99)
                         < 0.4) * 1

            deepJet = ak.fill_none(ev.Muon.matched_jet.btagDeepFlavB,
                                   0) * mask_close + 0 * mask_far
            jetRelIsoV2 = ev.Muon.jetRelIso * mask_close + ev.Muon.pfRelIso03_all * mask_far  # default to 0 if no match
            #conePt = 0.9 * ak.fill_none(ev.Muon.matched_jet.pt,0) * mask_close + ev.Muon.pt*(1 + ev.Muon.miniPFRelIso_all)*mask_far

            if self.year == 2017 or self.year == 2018:
                I_1 = 0.11
                I_2 = 0.74
                I_3 = 6.8
            elif self.year == 2016:
                I_1 = 0.16
                I_2 = 0.76
                I_3 = 7.2

            PF_unflatten = ak.from_regular(
                ev.Muon.miniPFRelIso_all[:, :, np.newaxis])
            max_miniIso = ak.max(
                ak.concatenate(
                    [PF_unflatten - I_1,
                     ak.zeros_like(PF_unflatten)], axis=2),
                axis=2)  #equivalent to max(0, ev.Muon.miniPFRelIso_all - I_1)
            muon_pt_unflatten = ak.from_regular(ev.Muon.pt[:, :, np.newaxis])
            jet_pt_unflatten = ak.from_regular(
                ev.Muon.matched_jet.pt[:, :, np.newaxis])
            max_pt = ak.max(
                ak.concatenate([muon_pt_unflatten, jet_pt_unflatten * I_2],
                               axis=2),
                axis=2)  #max(ev.Muon.pt, ev.Muon.matched_jet.pt * I_2)
            conePt = (ev.Muon.pt *
                      (1 + max_miniIso)) * (ev.Muon.jetPtRelv2 > I_3) + (
                          max_pt * ~(ev.Muon.jetPtRelv2 > I_3))
            ev['Muon', 'deepJet'] = ak.copy(deepJet)
            ev['Muon', 'jetRelIsoV2'] = jetRelIsoV2
            ev['Muon', 'conePt'] = conePt
            ev['Muon', 'id'] = ak.ones_like(conePt) * id_level

            self.cand = ev.Muon

        elif self.obj == "Electron":
            # calculate new variables. asignment is awkward, but what can you do.
            ev['Electron',
               'absMiniIso'] = ev.Electron.miniPFRelIso_all * ev.Electron.pt
            ev['Electron', 'etaSC'] = ev.Electron.eta + ev.Electron.deltaEtaSC

            if self.year == 2017 or self.year == 2018:
                I_1 = 0.07
                I_2 = 0.78
                I_3 = 8.0

            elif self.year == 2016:
                I_1 = 0.12
                I_2 = 0.80
                I_3 = 7.2

            # the following line is only needed if we do our own matching.
            # right now, we keep using the NanoAOD match, but check the deltaR distance
            # jet_index, mask_match, mask_nomatch = self.matchJets(ev.Electron, ev.Jet)

            # this is what we are using:
            # - jetRelIso if the matched jet is within deltaR<0.4, pfRelIso03_all otherwise
            # - btagDeepFlavB discriminator of the matched jet if jet is within deltaR<0.4, 0 otherwise
            # - pt_cone = 0.9*pt of matched jet if jet is within deltaR<0.4, pt/(pt+iso) otherwise

            mask_close = (ak.fill_none(
                ev.Electron.delta_r(ev.Electron.matched_jet), 99) < 0.4) * 1
            mask_far = ~(ak.fill_none(
                ev.Electron.delta_r(ev.Electron.matched_jet), 99) < 0.4) * 1

            deepJet = ak.fill_none(ev.Electron.matched_jet.btagDeepFlavB,
                                   0) * mask_close
            jetRelIsoV2 = ev.Electron.jetRelIso * mask_close + ev.Electron.pfRelIso03_all * mask_far  # default to 0 if no match
            #conePt = 0.9 * ak.fill_none(ev.Electron.matched_jet.pt,0) * mask_close + ev.Electron.pt*(1 + ev.Electron.miniPFRelIso_all)*mask_far

            PF_unflatten = ak.from_regular(
                ev.Electron.miniPFRelIso_all[:, :, np.newaxis])
            max_miniIso = ak.max(
                ak.concatenate(
                    [PF_unflatten - I_1,
                     ak.zeros_like(PF_unflatten)], axis=2),
                axis=2)  #equivalent to max(0, ev.Muon.miniPFRelIso_all - I_1)
            electron_pt_unflatten = ak.from_regular(ev.Electron.pt[:, :,
                                                                   np.newaxis])
            jet_pt_unflatten = ak.from_regular(
                ev.Electron.matched_jet.pt[:, :, np.newaxis])
            max_pt = ak.max(
                ak.concatenate([electron_pt_unflatten, jet_pt_unflatten * I_2],
                               axis=2),
                axis=2)  #max(ev.Muon.pt, ev.Muon.matched_jet.pt * I_2)
            conePt = (ev.Electron.pt *
                      (1 + max_miniIso)) * (ev.Electron.jetPtRelv2 > I_3) + (
                          max_pt * ~(ev.Electron.jetPtRelv2 > I_3))

            ev['Electron', 'deepJet'] = ak.copy(deepJet)
            ev['Electron', 'jetRelIsoV2'] = jetRelIsoV2
            ev['Electron', 'conePt'] = conePt
            ev['Electron', 'id'] = ak.ones_like(conePt) * id_level

            ev['Electron', 'jetRelIso'] = ev.Electron.jetRelIso
            ev['Electron', 'jetPtRelv2'] = ev.Electron.jetPtRelv2

            self.cand = ev.Electron

        self.getSelection()

        if self.obj == "Electron" and self.wp == "tight":
            self.selection = self.selection & self.getElectronMVAID(
            ) & self.getIsolation(0.07, 0.78, 8.0) & self.isTriggerSafeNoIso()
            if self.v > 0: print(" - custom ID and multi-isolation")

        if self.obj == "Electron" and self.wp == "tightFCNC":
            self.selection = self.selection & self.getElectronMVAID(
            ) & self.getFCNCIsolation(ev.Electron.jetRelIso,
                                      ev.Electron.jetPtRelv2, I_2,
                                      I_3) & (ev.Electron.miniPFRelIso_all <
                                              I_1) & self.isTriggerSafeNoIso()
            if self.v > 0: print(" - custom ID and multi-isolation")

        if self.obj == "Muon" and self.wp == "tight":
            self.selection = self.selection & self.getIsolation(
                0.11, 0.74, 6.8)
            if self.v > 0: print(" - custom multi-isolation")
            #self.selection = self.selection & ak.fill_none(ev.Muon.matched_jet.btagDeepFlavB<0.2770, True)
            #self.selection = self.selection & (ev.Muon.matched_jet.btagDeepFlavB<0.2770)
            #if self.v>0: print (" - deepJet")

        if self.obj == "Muon" and self.wp == "tightFCNC":
            self.selection = self.selection & self.getFCNCIsolation(
                ev.Muon.jetRelIso, ev.Muon.jetPtRelv2, I_2,
                I_3) & (ev.Muon.miniPFRelIso_all < I_1)
            if self.v > 0: print(" - custom multi-isolation")

        if self.obj == "Electron" and (self.wp == "tightTTH"
                                       or self.wp == 'fakeableTTH'
                                       or self.wp == "tightSSTTH"
                                       or self.wp == 'fakeableSSTTH'):
            self.selection = self.selection & self.getSigmaIEtaIEta
            if self.v > 0: print(" - SigmaIEtaIEta")
            #self.selection = self.selection & ak.fill_none(ev.Electron.matched_jet.btagDeepFlavB<0.2770, True)
            #self.selection = self.selection & (ev.Electron.matched_jet.btagDeepFlavB<0.2770)
            #self.selection = self.selection & (ev.Jet[ev.Electron.jetIdx].btagDeepFlavB<0.2770)
            #if self.v>0: print (" - deepJet")

        if self.obj == "Electron" and self.wp == "looseFCNC":
            self.selection = self.selection & (ev.Electron.miniPFRelIso_all <
                                               0.4)

        if self.obj == 'Muon' and (self.wp == 'fakeableTTH'
                                   or self.wp == 'fakeableSSTTH'):
            #self.selection = self.selection & (self.cand.deepJet < self.getThreshold(self.cand.conePt, min_pt=20, max_pt=45, low=0.2770, high=0.0494))
            self.selection = self.selection & (ak.fill_none(
                ev.Muon.matched_jet.btagDeepFlavB, 0) < self.getThreshold(
                    self.cand.conePt, min_pt=20, max_pt=45))
            if self.v > 0: print(" - interpolated deepJet")

        if self.obj == "Muon" and self.wp == "looseFCNC":
            self.selection = self.selection & (ev.Muon.miniPFRelIso_all < 0.4)
    def process(self, events):

        output = self.accumulator.identity()

        output['total']['all'] += len(events)
        # use a very loose preselection to filter the events
        presel = ak.num(events.Jet) > 2

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        ## Muons
        muon = Collections(ev, "Muon", "vetoTTH").get()
        tightmuon = Collections(ev, "Muon", "tightTTH").get()
        dimuon = choose(muon, 2)
        SSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge) > 0, axis=1)
        leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1))
        leading_muon = muon[leading_muon_idx]

        ## Electrons
        electron = Collections(ev, "Electron", "vetoTTH").get()
        tightelectron = Collections(ev, "Electron", "tightTTH").get()
        dielectron = choose(electron, 2)
        SSelectron = ak.any(
            (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1)
        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[leading_electron_idx]

        ## Merge electrons and muons - this should work better now in ak1
        dilepton = cross(muon, electron)
        SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) > 0,
                          axis=1)

        lepton = ak.concatenate([muon, electron], axis=1)
        leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1))
        leading_lepton = lepton[leading_lepton_idx]
        trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1))
        trailing_lepton = lepton[trailing_lepton_idx]

        dilepton_mass = (leading_lepton + trailing_lepton).mass
        dilepton_pt = (leading_lepton + trailing_lepton).pt
        dilepton_dR = delta_r(leading_lepton, trailing_lepton)

        mt_lep_met = mt(lepton.pt, lepton.phi, ev.MET.pt, ev.MET.phi)
        min_mt_lep_met = ak.min(mt_lep_met, axis=1)

        ## Jets
        jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom')
        jet = jet[ak.argsort(
            jet.pt_nom, ascending=False
        )]  # need to sort wrt smeared and recorrected jet pt
        jet = jet[~match(jet, muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        central = jet[(abs(jet.eta) < 2.4)]
        btag = getBTagsDeepFlavB(
            jet, year=self.year)  # should study working point for DeepJet
        light = getBTagsDeepFlavB(jet, year=self.year, invert=True)
        fwd = getFwdJet(light)
        fwd_noPU = getFwdJet(light, puId=False)

        tau = getTaus(ev)
        track = getIsoTracks(ev)
        ## forward jets
        j_fwd = fwd[ak.singletons(ak.argmax(
            fwd.p, axis=1))]  # highest momentum spectator

        high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:, :2]

        bl = cross(lepton, high_score_btag)
        bl_dR = delta_r(bl['0'], bl['1'])
        min_bl_dR = ak.min(bl_dR, axis=1)

        jf = cross(j_fwd, jet)
        mjf = (jf['0'] + jf['1']).mass
        j_fwd2 = jf[ak.singletons(
            ak.argmax(mjf, axis=1)
        )]['1']  # this is the jet that forms the largest invariant mass with j_fwd
        delta_eta = ak.fill_none(
            ak.pad_none(abs(j_fwd2.eta - j_fwd.eta), 1, clip=True), 0)

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        ## other variables
        ht = ak.sum(jet.pt, axis=1)
        st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt,
                                                            axis=1)

        ## event selectors
        filters = getFilters(ev, year=self.year, dataset=dataset)

        dilep = ((ak.num(tightelectron) + ak.num(tightmuon)) == 2)
        lep0pt = ((ak.num(electron[(electron.pt > 25)]) +
                   ak.num(muon[(muon.pt > 25)])) > 0)
        lep1pt = ((ak.num(electron[(electron.pt > 20)]) +
                   ak.num(muon[(muon.pt > 20)])) > 1)
        lepveto = ((ak.num(electron) + ak.num(muon)) == 2)

        selection = PackedSelection()
        selection.add('lepveto', lepveto)
        selection.add('dilep', dilep)
        selection.add('filter', (filters))
        selection.add('p_T(lep0)>25', lep0pt)
        selection.add('p_T(lep1)>20', lep1pt)
        selection.add('SS', (SSlepton | SSelectron | SSmuon))
        selection.add('N_jet>3', (ak.num(jet) >= 4))
        selection.add('N_central>2', (ak.num(central) >= 3))
        selection.add('N_btag>0', (ak.num(btag) >= 1))
        selection.add('N_fwd>0', (ak.num(fwd) >= 1))

        #ss_reqs = ['lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS']
        ss_reqs = [
            'lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS'
        ]
        #bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0', 'N_fwd>0']
        bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0']

        ss_reqs_d = {sel: True for sel in ss_reqs}
        ss_selection = selection.require(**ss_reqs_d)
        bl_reqs_d = {sel: True for sel in bl_reqs}
        BL = selection.require(**bl_reqs_d)

        weight = Weights(len(ev))

        if not dataset == 'MuonEG':
            # lumi weight
            weight.add("weight", ev.weight)

            # PU weight - not in the babies...
            weight.add("PU",
                       ev.puWeight,
                       weightUp=ev.puWeightUp,
                       weightDown=ev.puWeightDown,
                       shift=False)

            # b-tag SFs
            weight.add("btag", self.btagSF.Method1a(btag, light))

            # lepton SFs
            weight.add("lepton", self.leptonSF.get(electron, muon))

        #cutflow     = Cutflow(output, ev, weight=weight)
        #cutflow_reqs_d = {}
        #for req in bl_reqs:
        #    cutflow_reqs_d.update({req: True})
        #    cutflow.addRow( req, selection.require(**cutflow_reqs_d) )

        labels = {
            'topW_v3': 0,
            'TTW': 1,
            'TTZ': 2,
            'TTH': 3,
            'ttbar': 4,
            'ttbar1l_MG': 4
        }
        if dataset in labels:
            label_mult = labels[dataset]
        else:
            label_mult = 5
        label = np.ones(len(ev[BL])) * label_mult

        output["n_lep"] += processor.column_accumulator(
            ak.to_numpy((ak.num(electron) + ak.num(muon))[BL]))
        output["n_lep_tight"] += processor.column_accumulator(
            ak.to_numpy((ak.num(tightelectron) + ak.num(tightmuon))[BL]))

        output["lead_lep_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].pt, axis=1)))
        output["lead_lep_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].eta, axis=1)))
        output["lead_lep_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].phi, axis=1)))
        output["lead_lep_charge"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].charge, axis=1)))

        output["sublead_lep_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].pt, axis=1)))
        output["sublead_lep_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].eta, axis=1)))
        output["sublead_lep_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].phi, axis=1)))
        output["sublead_lep_charge"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].charge, axis=1)))

        output["lead_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].pt, axis=1)))
        output["lead_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].eta, axis=1)))
        output["lead_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].phi, axis=1)))

        output["sublead_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].pt, axis=1)))
        output["sublead_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].eta, axis=1)))
        output["sublead_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].phi, axis=1)))

        output["lead_btag_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].pt, axis=1)))
        output["lead_btag_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].eta, axis=1)))
        output["lead_btag_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].phi, axis=1)))

        output["sublead_btag_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].pt, axis=1)))
        output["sublead_btag_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].eta, axis=1)))
        output["sublead_btag_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].phi, axis=1)))

        output["fwd_jet_p"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(ak.pad_none(j_fwd[BL].p, 1, clip=True),
                                        0),
                           axis=1)))
        output["fwd_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].pt, 1, clip=True), 0),
                           axis=1)))
        output["fwd_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].eta, 1, clip=True), 0),
                           axis=1)))
        output["fwd_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].phi, 1, clip=True), 0),
                           axis=1)))

        output["mjj_max"] += processor.column_accumulator(
            ak.to_numpy(ak.fill_none(ak.max(mjf[BL], axis=1), 0)))
        output["delta_eta_jj"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(delta_eta[BL], axis=1)))

        output["met"] += processor.column_accumulator(ak.to_numpy(met_pt[BL]))
        output["ht"] += processor.column_accumulator(ak.to_numpy(ht[BL]))
        output["st"] += processor.column_accumulator(ak.to_numpy(st[BL]))
        output["n_jet"] += processor.column_accumulator(
            ak.to_numpy(ak.num(jet[BL])))
        output["n_btag"] += processor.column_accumulator(
            ak.to_numpy(ak.num(btag[BL])))
        output["n_fwd"] += processor.column_accumulator(
            ak.to_numpy(ak.num(fwd[BL])))
        output["n_central"] += processor.column_accumulator(
            ak.to_numpy(ak.num(central[BL])))
        output["n_tau"] += processor.column_accumulator(
            ak.to_numpy(ak.num(tau[BL])))
        output["n_track"] += processor.column_accumulator(
            ak.to_numpy(ak.num(track[BL])))

        output["dilepton_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(dilepton_pt[BL], axis=1)))
        output["dilepton_mass"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(dilepton_mass[BL], axis=1)))
        output["min_bl_dR"] += processor.column_accumulator(
            ak.to_numpy(min_bl_dR[BL]))
        output["min_mt_lep_met"] += processor.column_accumulator(
            ak.to_numpy(min_mt_lep_met[BL]))

        output["label"] += processor.column_accumulator(label)
        output["weight"] += processor.column_accumulator(weight.weight()[BL])

        output["presel"]["all"] += len(ev[ss_selection])
        output["sel"]["all"] += len(ev[BL])

        return output
Exemple #25
0
def test_rochester():
    rochester_data = lookup_tools.txt_converters.convert_rochester_file(
        "tests/samples/RoccoR2018.txt.gz", loaduncs=True)
    rochester = lookup_tools.rochester_lookup.rochester_lookup(rochester_data)

    # to test 1-to-1 agreement with official Rochester requires loading C++ files
    # instead, preload the correct scales in the sample directory
    # the script tests/samples/rochester/build_rochester.py produces these
    official_data_k = np.load("tests/samples/nano_dimuon_rochester.npy")
    official_data_err = np.load("tests/samples/nano_dimuon_rochester_err.npy")
    official_mc_k = np.load("tests/samples/nano_dy_rochester.npy")
    official_mc_err = np.load("tests/samples/nano_dy_rochester_err.npy")
    mc_rand = np.load("tests/samples/nano_dy_rochester_rand.npy")

    # test against nanoaod
    events = NanoEventsFactory.from_root(
        os.path.abspath("tests/samples/nano_dimuon.root")).events()

    data_k = rochester.kScaleDT(events.Muon.charge, events.Muon.pt,
                                events.Muon.eta, events.Muon.phi)
    data_k = np.array(ak.flatten(data_k))
    assert all(np.isclose(data_k, official_data_k))
    data_err = rochester.kScaleDTerror(events.Muon.charge, events.Muon.pt,
                                       events.Muon.eta, events.Muon.phi)
    data_err = np.array(ak.flatten(data_err), dtype=float)
    assert all(np.isclose(data_err, official_data_err, atol=1e-8))

    # test against mc
    events = NanoEventsFactory.from_root(
        os.path.abspath("tests/samples/nano_dy.root")).events()

    hasgen = ~np.isnan(ak.fill_none(events.Muon.matched_gen.pt, np.nan))
    mc_rand = ak.unflatten(mc_rand, ak.num(hasgen))
    mc_kspread = rochester.kSpreadMC(
        events.Muon.charge[hasgen],
        events.Muon.pt[hasgen],
        events.Muon.eta[hasgen],
        events.Muon.phi[hasgen],
        events.Muon.matched_gen.pt[hasgen],
    )
    mc_ksmear = rochester.kSmearMC(
        events.Muon.charge[~hasgen],
        events.Muon.pt[~hasgen],
        events.Muon.eta[~hasgen],
        events.Muon.phi[~hasgen],
        events.Muon.nTrackerLayers[~hasgen],
        mc_rand[~hasgen],
    )
    mc_k = np.array(ak.flatten(ak.ones_like(events.Muon.pt)))
    hasgen_flat = np.array(ak.flatten(hasgen))
    mc_k[hasgen_flat] = np.array(ak.flatten(mc_kspread))
    mc_k[~hasgen_flat] = np.array(ak.flatten(mc_ksmear))
    assert all(np.isclose(mc_k, official_mc_k))

    mc_errspread = rochester.kSpreadMCerror(
        events.Muon.charge[hasgen],
        events.Muon.pt[hasgen],
        events.Muon.eta[hasgen],
        events.Muon.phi[hasgen],
        events.Muon.matched_gen.pt[hasgen],
    )
    mc_errsmear = rochester.kSmearMCerror(
        events.Muon.charge[~hasgen],
        events.Muon.pt[~hasgen],
        events.Muon.eta[~hasgen],
        events.Muon.phi[~hasgen],
        events.Muon.nTrackerLayers[~hasgen],
        mc_rand[~hasgen],
    )
    mc_err = np.array(ak.flatten(ak.ones_like(events.Muon.pt)))
    mc_err[hasgen_flat] = np.array(ak.flatten(mc_errspread))
    mc_err[~hasgen_flat] = np.array(ak.flatten(mc_errsmear))
    assert all(np.isclose(mc_err, official_mc_err, atol=1e-8))
Exemple #26
0
def to_np_array(ak_array, maxN=100, pad=0):
    return ak.fill_none(ak.pad_none(ak_array, maxN, clip=True, axis=-1),
                        pad).to_numpy()
def test():
    array = ak.values_astype(ak.Array([1.1, 2.2, None, 3.3]), np.float32)
    assert str(ak.fill_none(array, np.float32(0)).type) == "4 * float32"
Exemple #28
0
def pad_awkward_array(array, pad_length, pad_value):
    return awkward.fill_none(awkward.pad_none(array, pad_length, clip=True),
                             pad_value)
def test():
    a = ak.values_astype(ak.Array([1, None]), np.float32)

    assert ak.fill_none(a, np.float32(0)).tolist() == [1, 0]
    assert str(ak.fill_none(a, np.float32(0)).type) == "2 * float32"

    assert ak.fill_none(a, np.array(0, np.float32)).tolist() == [1, 0]
    assert str(ak.fill_none(a, np.array(0, np.float32)).type) == "2 * float32"

    assert ak.fill_none(a, np.array([0], np.float32)).tolist() == [1, [0]]
    assert (str(ak.fill_none(a, np.array(
        [0], np.float32)).type) == "2 * union[float32, 1 * float32]")

    assert ak.fill_none(a, np.array([[0]], np.float32)).tolist() == [1, [[0]]]
    assert (str(ak.fill_none(a, np.array(
        [[0]], np.float32)).type) == "2 * union[float32, 1 * 1 * float32]")

    assert ak.fill_none(a, 0).tolist() == [1, 0]
    assert str(ak.fill_none(a, 0).type) == "2 * float64"

    assert ak.fill_none(a, [0]).tolist() == [1, [0]]
    assert str(ak.fill_none(a, [0]).type) == "2 * union[float32, 1 * int64]"

    assert ak.fill_none(a, [[0]]).tolist() == [1, [[0]]]
    assert str(ak.fill_none(
        a, [[0]]).type) == "2 * union[float32, 1 * var * int64]"
Exemple #30
0
 def num(ar):
     return ak.num(ak.fill_none(ar[~ak.is_none(ar)], 0), axis=0)