Exemple #1
0
def embed_crossref(source, idx_name, dest, dest_name):
    """Embed a cross-reference

    Parameters
    ----------
        source : ak.Array
            any array with shape N * var * {record}
        idx_name : str
            A field in the source record
        dest : ak.Array
            any array with shape N * var * {record}, where:
            ``ak.max(source[idx_name], axis=1) < ak.num(dest)`` and
            ``ak.min(source[idx_name], axis=1) >= 0``
    """
    print(ak.max(source[idx_name], axis=1))
    print(ak.num(dest))
    print(ak.all(ak.max(source[idx_name], axis=1) < ak.num(dest)))

    assert ak.all(ak.max(source[idx_name], axis=1) < ak.num(dest))
    assert ak.all(ak.min(source[idx_name], axis=1) >= 0)

    id_global = ak.flatten(
        source[idx_name] + np.asarray(dest.layout.starts), axis=None
    )
    source[dest_name] = ak.Array(
        ak.layout.ListOffsetArray64(
            source.layout.offsets,
            ak.layout.ListOffsetArray64(
                source.layout.content.offsets,
                ak.flatten(dest)[id_global].layout,
            ),
        )
    )
Exemple #2
0
def test_read_nanomc():
    factory = NanoEventsFactory.from_file(
        os.path.abspath('tests/samples/nano_dy.root'))
    events = factory.events()

    # test after views first
    genroundtrips(events.GenPart.mask[events.GenPart.eta > 0])
    genroundtrips(events.mask[ak.any(events.Electron.pt > 50, axis=1)].GenPart)
    genroundtrips(events.GenPart)

    genroundtrips(events.GenPart[events.GenPart.eta > 0])
    genroundtrips(events[ak.any(events.Electron.pt > 50, axis=1)].GenPart)

    # sane gen matching (note for electrons gen match may be photon(22))
    assert ak.all((abs(events.Electron.matched_gen.pdgId) == 11)
                  | (events.Electron.matched_gen.pdgId == 22))
    assert ak.all(abs(events.Muon.matched_gen.pdgId) == 13)

    genroundtrips(events.Electron.matched_gen)

    crossref(events[ak.num(events.Jet) > 2])
    crossref(events)

    assert ak.any(events.Photon.isTight, axis=1).tolist()[:9] == [
        False, True, True, True, False, False, False, False, False
    ]
Exemple #3
0
def genroundtrips(genpart):
    # check genpart roundtrip
    assert ak.all(genpart.children.parent.pdgId == genpart.pdgId)
    assert ak.all(
        ak.any(genpart.parent.children.pdgId == genpart.pdgId,
               axis=-1,
               mask_identity=True))
    # distinctParent should be distinct and it should have a relevant child
    assert ak.all(genpart.distinctParent.pdgId != genpart.pdgId)
    assert ak.all(
        ak.any(genpart.distinctParent.children.pdgId == genpart.pdgId,
               axis=-1,
               mask_identity=True))
    # exercise hasFlags
    genpart.hasFlags(['isHardProcess'])
    genpart.hasFlags(['isHardProcess', 'isDecayedLeptonHadron'])
genPart = final.GenPart
tops = genPart[abs(genPart.pdgId) == 6]

#The isLastCopy Flag filters out copy Genparticles:
tops = tops[tops.hasFlags('isLastCopy')]
tDecay = tops.distinctChildren
tDecay = tDecay[tDecay.hasFlags('isLastCopy')]
t_Events = tDecay[abs(tDecay.pdgId) == 5]
W = tDecay[abs(tDecay.pdgId) == 24]
W = W[W.hasFlags('isLastCopy')]
WDecay = W.distinctChildren
WDecay = WDecay[WDecay.hasFlags('isLastCopy')]

#t_events is the lone bottom, W_events is the -> two jets
#select the hadronically decaying W
W_Events = ak.flatten(WDecay[ak.all(abs(WDecay.pdgId) <= 8, axis=-1)], axis=3)

#HadW is mask for Quark deacying W boson
hadW = ak.num(W_Events, axis=2) == 2
#filters out t_events that have a hadronically decayign W Boson
hadB = t_Events[hadW]
hadB = ak.flatten(hadB, axis=2)

W_quarks = W_Events[hadW]
W_quarks = ak.flatten(W_quarks, axis=2)
#concatentating these two arrays make an array of events with the correctly decaying GenParticles.
qqb = ak.concatenate([hadB, W_quarks], axis=1)

print("qqb Genparts matched")

#Filtering Out events with extra tops
Exemple #5
0
    fig.savefig(f'valplots/{hist_spec[0]}.png')

print("Checking Coffea/NanoEvents compatibility:")

import coffea
import uproot
import awkward1 as ak
import numpy as np
from coffea.nanoevents import NanoEventsFactory

for fn in check_files:
    print(f"  {fn}")

    def nano_evts(fname):
        factory = NanoEventsFactory.from_file(
            fname,
            entry_start=0,
            entry_stop=10000,
            metadata={"dataset": ""},
        )
        return factory.events()

    evts = nano_evts(fn)
    print("  Subjets pt ordered (should be false):",
          ak.all(evts.SubJet.pt[:, :-1] - evts.SubJet.pt[:, 1:] >= 0))
    print("  SDmass from subjets hist:")
    print(
        np.histogram(ak.to_numpy(
            ak.flatten(evts.FatJet.subjets.sum().mass, None)),
                     bins=np.linspace(40, 200, 20))[0])
Exemple #6
0
    def process(self, events):

        # get meta infos
        dataset = events.metadata["dataset"]
        isRealData = not hasattr(events, "genWeight")
        n_events = len(events)
        selection = processor.PackedSelection()
        weights = processor.Weights(n_events)
        output = self.accumulator.identity()

        # weights
        if not isRealData:
            output['sumw'][dataset] += awkward1.sum(events.genWeight)
        
        # trigger
        triggers = {}
        for channel in ["e","mu"]:
            trigger = np.zeros(len(events), dtype='bool')
            for t in self._trigger[channel]:
                try:
                    trigger = trigger | events.HLT[t]
                except:
                    warnings.warn("Missing trigger %s" % t, RuntimeWarning)
            triggers[channel] = trigger
            
        # met filter
        met_filters = ["goodVertices",
                       "globalSuperTightHalo2016Filter",
                       "HBHENoiseFilter",
                       "HBHENoiseIsoFilter",
                       "EcalDeadCellTriggerPrimitiveFilter",
                       "BadPFMuonFilter",
                       ]
        met_filters_mask = np.ones(len(events), dtype='bool')
        for t in met_filters:
            met_filters_mask = met_filters_mask & events.Flag[t]
        selection.add("met_filter", awkward1.to_numpy(met_filters_mask))
        
        # load objects
        muons = events.Muon
        electrons = events.Electron
        jets = events.Jet
        fatjets = events.FatJet
        subjets = events.SubJet
        fatjetsLS = events.FatJetLS
        met = events.MET
        
        # muons
        goodmuon = (
            (muons.mediumId)
            & (muons.miniPFRelIso_all <= 0.2)
            & (muons.pt >= 27)
            & (abs(muons.eta) <= 2.4)
            & (abs(muons.dz) < 0.1)
            & (abs(muons.dxy) < 0.05)
            & (muons.sip3d < 4)
        )
        good_muons = muons[goodmuon]
        ngood_muons = awkward1.sum(goodmuon, axis=1)

        # electrons
        goodelectron = (
            (electrons.mvaFall17V2noIso_WP90)
            & (electrons.pt >= 30)
            & (abs(electrons.eta) <= 1.479)
            & (abs(electrons.dz) < 0.1)
            & (abs(electrons.dxy) < 0.05)
            & (electrons.sip3d < 4)
        )
        good_electrons = electrons[goodelectron]
        ngood_electrons = awkward1.sum(goodelectron, axis=1)
        
        # good leptons
        good_leptons = awkward1.concatenate([good_muons, good_electrons], axis=1)
        good_leptons = good_leptons[awkward1.argsort(good_leptons.pt)]
        
        # lepton candidate
        candidatelep = awkward1.firsts(good_leptons)
        
        # lepton channel selection
        selection.add("ch_e", awkward1.to_numpy((triggers["e"]) & (ngood_electrons==1) & (ngood_muons==0))) # not sure if need to require 0 muons or 0 electrons in the next line
        selection.add("ch_mu", awkward1.to_numpy((triggers["mu"]) & (ngood_electrons==0) & (ngood_muons==1)))
        
        # jets
        ht = awkward1.sum(jets[jets.pt > 30].pt,axis=1)
        selection.add("ht_400", awkward1.to_numpy(ht>=400))
        goodjet = (
            (jets.isTight)
            & (jets.pt > 30)
            & (abs(jets.eta) <= 2.5)
            )
        good_jets = jets[goodjet]

        # fat jets
        jID = "isTight"
        # TODO: add mass correction

        # a way to get the first two subjets
        # cart = awkward1.cartesian([fatjets, subjets], nested=True)
        # idxes = awkward1.pad_none(awkward1.argsort(cart['0'].delta_r(cart['1'])), 2, axis=2)
        # sj1 = subjets[idxes[:,:,0]]
        # sj2 = subjets[idxes[:,:,1]]
        
        good_fatjet = (
            (getattr(fatjets, jID))
            & (abs(fatjets.eta) <= 2.4)
            & (fatjets.pt > 50)
            & (fatjets.msoftdrop > 30)
            & (fatjets.msoftdrop < 210)
            #& (fatjets.pt.copy(content=fatjets.subjets.content.counts) == 2) # TODO: require 2 subjets?
            # this can probably be done w FatJet_subJetIdx1 or FatJet_subJetIdx2
            & (awkward1.all(fatjets.subjets.pt >= 20))
            & (awkward1.all(abs(fatjets.subjets.eta) <= 2.4))
        )
        good_fatjets = fatjets[good_fatjet]

        # hbb candidate
        mask_hbb = (
            (good_fatjets.pt > 200)
            & (good_fatjets.delta_r(candidatelep) > 2.0)
            )
        candidateHbb = awkward1.firsts(good_fatjets[mask_hbb])

        # b-tag #& (good_fatjets.particleNetMD_Xbb > 0.9)
        selection.add('hbb_btag',awkward1.to_numpy(candidateHbb.deepTagMD_ZHbbvsQCD >= 0.8)) # score would be larger for tight category (0.97)  
        
        # No AK4 b-tagged jets away from bb jet
        jets_HbbV = jets[good_jets.delta_r(candidateHbb) >= 1.2]
        selection.add('hbb_vetobtagaway',  awkward1.to_numpy(awkward1.max(jets_HbbV.btagDeepB, axis=1, mask_identity=False) > BTagEfficiency.btagWPs[self._year]['medium']))
        
        # fat jets Lepton Subtracted
        # wjj candidate
        mask_wjj = (
            (fatjetsLS.pt > 50)
            & (fatjetsLS.delta_r(candidatelep) > 1.2)
            # need to add 2 subjets w pt > 20 & eta<2.4
            # need to add ID?
            )
        candidateWjj = awkward1.firsts(fatjetsLS[mask_wjj][awkward1.argmin(fatjetsLS[mask_wjj].delta_r(candidatelep),axis=1,keepdims=True)])
        # add t2/t1 <= 0.75 (0.45 HP)
        selection.add('hww_mass',  awkward1.to_numpy(candidateWjj.mass >= 10))

        print('met ',met)
        # wjjlnu info
        #HSolverLiInfo  hwwInfoLi;
        # qqSDmass = candidateWjj.msoftdrop
        # hwwLi   = hSolverLi->minimize(candidatelep.p4(), met.p4(), wjjcand.p4(), qqSDmass, hwwInfoLi)
        #neutrino = hwwInfoLi.neutrino;
        #wlnu     = hwwInfoLi.wlnu;
        #wqq      = hwwInfoLi.wqqjet;
        #hWW      = hwwInfoLi.hWW;
        #wwDM     = PhysicsUtilities::deltaR( wlnu,wqq) * hWW.pt()/2.0;
        # add dlvqq <= 11 (2.5 HP)
               
        # in the meantime let's add the mass
        '''
        mm = (candidatejet - candidatelep).mass2
        jmass = (mm>0)*np.sqrt(np.maximum(0, mm)) + (mm<0)*candidatejet.mass
        joffshell = jmass < 62.5
        massassumption = 80.*joffshell + (125 - 80.)*~joffshell
        x = massassumption**2/(2*candidatelep.pt*met.pt) + np.cos(candidatelep.phi - met.phi)
        met_eta = (
            (x < 1)*np.arcsinh(x*np.sinh(candidatelep.eta))
            + (x > 1)*(
                candidatelep.eta - np.sign(candidatelep.eta)*np.arccosh(candidatelep.eta)
                )
            )
        met_p4 = TLorentzVectorArray.from_ptetaphim(np.array([0.]),np.array([0.]),np.array([0.]),np.array([0.]))
        if met.size > 0:
            met_p4 = TLorentzVectorArray.from_ptetaphim(met.pt, met_eta.fillna(0.), met.phi, np.zeros(met.size))
        
        # hh system
        candidateHH = candidateWjj + met_p4 + candidateHbb
        selection.add('hh_mass', candidateHH.mass >= 700)
        selection.add('hh_centrality', candidateHH.pt/candidateHH.mass >= 0.3)
        '''
        
        channels = {"e": ["met_filter","ch_e","ht_400","hbb_btag","hbb_vetobtagaway","hww_mass"], #,"hh_mass","hh_centrality"],
                    "mu": ["met_filter","ch_mu","ht_400","hbb_btag","hbb_vetobtagaway","hww_mass"] #,"hh_mass","hh_centrality"],
                    }

        # need to add gen info
        
        if not isRealData:
            weights.add('genweight', events.genWeight)
            add_pileup_weight(weights, events.Pileup.nPU, self._year, dataset)
            
        for channel, cuts in channels.items():
            allcuts = set()
            output['cutflow'].fill(dataset=dataset, channel=channel, cut=0, weight=weights.weight())
            for i, cut in enumerate(cuts):
                allcuts.add(cut)
                cut = selection.all(*allcuts)
                output['cutflow'].fill(dataset=dataset, channel=channel, cut=i + 1, weight=weights.weight()[cut])

        return output
Exemple #7
0
    def trilep_baseline(self, omit=[], cutflow=None, tight=False):
        '''
        give it a cutflow object if you want it to be filed.
        cuts in the omit list will not be applied
        '''
        self.selection = PackedSelection()

        is_trilep  = ((ak.num(self.ele) + ak.num(self.mu))==3)
        pos_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))<0)
        neg_charge = ((ak.sum(self.ele.pdgId, axis=1) + ak.sum(self.mu.pdgId, axis=1))>0)
        lep0pt     = ((ak.num(self.ele[(self.ele.pt>25)]) + ak.num(self.mu[(self.mu.pt>25)]))>0)
        lep1pt     = ((ak.num(self.ele[(self.ele.pt>20)]) + ak.num(self.mu[(self.mu.pt>20)]))>1)
        lepveto    = ((ak.num(self.ele_veto) + ak.num(self.mu_veto))==3)

        dimu    = choose(self.mu, 2)
        diele   = choose(self.ele, 2)
        dilep   = cross(self.mu, self.ele)

        OS_dimu = dimu[(dimu['0'].charge*dimu['1'].charge < 0)]
        OS_diele = diele[(diele['0'].charge*diele['1'].charge < 0)]

        offZ = (ak.all(abs(OS_dimu.mass-91.2)>10, axis=1) & ak.all(abs(OS_diele.mass-91.2)>10, axis=1))

        lepton = ak.concatenate([self.ele, self.mu], axis=1)
        lepton_pdgId_pt_ordered = ak.fill_none(ak.pad_none(lepton[ak.argsort(lepton.pt, ascending=False)].pdgId, 2, clip=True), 0)

        triggers  = getTriggers(self.events,
            ak.flatten(lepton_pdgId_pt_ordered[:,0:1]),
            ak.flatten(lepton_pdgId_pt_ordered[:,1:2]), year=self.year, dataset=self.dataset)

        ht = ak.sum(self.jet_all.pt, axis=1)
        st = self.met.pt + ht + ak.sum(self.mu.pt, axis=1) + ak.sum(self.ele.pt, axis=1)

        self.selection.add('lepveto',       lepveto)
        self.selection.add('trilep',        is_trilep)
        self.selection.add('filter',        self.filters)
        self.selection.add('trigger',       triggers)
        self.selection.add('p_T(lep0)>25',  lep0pt)
        self.selection.add('p_T(lep1)>20',  lep1pt)
        self.selection.add('N_jet>2',       (ak.num(self.jet_all)>2) )
        self.selection.add('N_jet>3',       (ak.num(self.jet_all)>3) )
        self.selection.add('N_central>1',   (ak.num(self.jet_central)>1) )
        self.selection.add('N_central>2',   (ak.num(self.jet_central)>2) )
        self.selection.add('N_btag>0',      (ak.num(self.jet_btag)>0) )
        self.selection.add('N_fwd>0',       (ak.num(self.jet_fwd)>0) )
        self.selection.add('MET>50',        (self.met.pt>50) )
        self.selection.add('ST>600',        (st>600) )
        self.selection.add('offZ',          offZ )

        reqs = [
            'filter',
            'lepveto',
            'trilep',
            'p_T(lep0)>25',
            'p_T(lep1)>20',
            'trigger',
            'offZ',
            'MET>50',
            'N_jet>2',
            'N_central>1',
            'N_btag>0',
            'N_fwd>0',
        ]
        
        if tight:
            reqs += [
                'N_jet>3',
                'N_central>2',
                'ST>600',
                #'MET>50',
                #'delta_eta',
            ]

        reqs_d = { sel: True for sel in reqs if not sel in omit }
        selection = self.selection.require(**reqs_d)

        self.reqs = [ sel for sel in reqs if not sel in omit ]

        if cutflow:
            #
            cutflow_reqs_d = {}
            for req in reqs:
                cutflow_reqs_d.update({req: True})
                cutflow.addRow( req, self.selection.require(**cutflow_reqs_d) )

        return selection
Exemple #8
0
 def equals(self, other):
     if isinstance(other, AwkwardSeries):
         other = other.data
     return ak.all(self.data == other)
def argon_kshell_cuts_3kV(events):
    #4) largest_s2_amplitude_pmt < 11600
    events = events[ak.all(events.s2.height_mvdc_bot < 11600, axis=1)]

    #5)second_largest_s2_area_pmt = 0
    events = events[events.s2s_per_waveform == 1]

    #6)largest_s1_area_pmt >0
    events = events[ak.any(events.s1.area_pe_bot > 0, axis=1)]

    #7)largest_s2_area_pmt > largest_s1_area_pmt
    event = events[ak.max(events.s2.area_pe_bot, axis=1) > ak.max(
        events.s1.area_pe_bot, axis=1)]

    #8) 0.20 < s2_frt < 0.34
    events["s2", "s2_frt"] = events.s2.area_pe_top / (events.s2.area_pe_top +
                                                      events.s2.area_pe_bot)
    mask = ak.any(events.s2.s2_frt > 0.16, axis=1) & ak.any(
        events.s2.s2_frt < 0.34, axis=1)
    events = events[mask]

    #9)s2_area+s1_area>1175
    mask = ak.max(events.s2.area_pe_top,axis=1)+ak.max(events.s2.area_pe_bot,axis=1)+ak.max(events.s1.area_pe_top,axis=1)+\
    ak.max(events.s1.area_pe_bot,axis=1)>1175
    events = events[mask]

    #print("Length array pos 1")
    #print(ak.num(events,axis=0))
    if ak.num(events, axis=0) == 0:
        return ak.Array([])

    #Add the drifttime
    mask_s1_before_s2 = events.s1.pos_bot < ak.flatten(events.s2.pos_bot)

    #Cut away the event which don't have an s1 befor the s2. these are s2 only.
    events = events[ak.any(events.s1.area_pe_bot[mask_s1_before_s2], axis=1)]

    #print("Length array pos 2")
    #print(ak.num(events,axis=0))
    if ak.num(events, axis=0) == 0:
        return ak.Array([])

    mask_s1_before_s2 = events.s1.pos_bot < ak.flatten(events.s2.pos_bot)
    max_s1_before_s2 = ak.argmax(events.s1.area_pe_bot[mask_s1_before_s2],
                                 axis=1,
                                 keepdims=True)

    events["mask_max_s1_before_s2"] = max_s1_before_s2
    events["drifttime_musec"] = ak.flatten(
        (ak.max(events.s2.pos_bot, axis=1) -
         events.s1.pos_bot[max_s1_before_s2]) / 100)

    #10) S2 width cut
    lower_width = 34.5 + 0.22 * events["drifttime_musec"] + np.sqrt(
        32.6 * events["drifttime_musec"])
    upper_width = 48.2 + 0.19 * events["drifttime_musec"] + np.sqrt(
        47.3 * events["drifttime_musec"])

    upper_mask = ak.any(events.s2.width_bot < upper_width, axis=1)
    lower_mask = ak.any(events.s2.width_bot > lower_width, axis=1)

    events = events[upper_mask & lower_mask]

    #11)FDV cut
    v = 1.9608556663165941
    gate_time = 1.537109944449019

    events["z"] = -v * (events["drifttime_musec"] - gate_time)
    events = events[events.z < -2]
    events = events[events.z > -28]

    events["r_s2"] = ak.flatten(
        np.sqrt(np.square(events.s2.x_corr) + np.square(events.s2.y_corr)))
    events = events[events.r_s2 < 10]

    return events
Exemple #10
0
def crossref(events):
    # check some cross-ref roundtrips (some may not be true always but they are for the test file)
    assert ak.all(events.Jet.matched_muons.matched_jet.pt == events.Jet.pt)
    assert ak.all(events.Electron.matched_photon.matched_electron.r9 ==
                  events.Electron.r9)