def setUp(self): self.branin_experiment = get_branin_experiment_with_multi_objective() sobol = Models.SOBOL(search_space=self.branin_experiment.search_space) sobol_run = sobol.gen(n=20) self.branin_experiment.new_batch_trial().add_generator_run( sobol_run ).run().mark_completed() data = self.branin_experiment.fetch_data() ms_gpei = ModelSpec(model_enum=Models.GPEI) ms_gpei.fit(experiment=self.branin_experiment, data=data) ms_gpkg = ModelSpec(model_enum=Models.GPKG) ms_gpkg.fit(experiment=self.branin_experiment, data=data) self.fitted_model_specs = [ms_gpei, ms_gpkg] self.model_selection_node = GenerationNode( model_specs=self.fitted_model_specs, best_model_selector=SingleDiagnosticBestModelSelector( diagnostic="Fisher exact test p", criterion=MetricAggregation.MEAN, metric_aggregation=DiagnosticCriterion.MIN, ), )
def test_properties(self): node = GenerationNode( model_specs=[ ModelSpec( model_enum=Models.GPEI, model_kwargs={}, model_gen_kwargs={ "n": 1, "fixed_features": ObservationFeatures( parameters={}, trial_index=0 ), }, ), ], ) dat = self.branin_experiment.lookup_data() node.fit( experiment=self.branin_experiment, data=dat, ) self.assertEqual(node.model_enum, node.model_specs[0].model_enum) self.assertEqual(node.model_kwargs, node.model_specs[0].model_kwargs) self.assertEqual(node.model_gen_kwargs, node.model_specs[0].model_gen_kwargs) self.assertEqual(node.model_cv_kwargs, node.model_specs[0].model_cv_kwargs) self.assertEqual(node.fixed_features, node.model_specs[0].fixed_features) self.assertEqual(node.cv_results, node.model_specs[0].cv_results) self.assertEqual(node.diagnostics, node.model_specs[0].diagnostics)
def setUp(self): self.sobol_model_spec = ModelSpec( model_enum=Models.SOBOL, model_kwargs={"init_position": 3}, model_gen_kwargs={"some_gen_kwarg": "some_value"}, ) self.sobol_generation_node = GenerationNode(model_specs=[self.sobol_model_spec]) self.branin_experiment = get_branin_experiment(with_completed_trial=True)
def test_gen_validates_one_model_spec(self): generation_node = GenerationNode( model_specs=[self.sobol_model_spec, self.sobol_model_spec] ) # Base generation node can only handle one model spec at the moment # (this might change in the future), so it should raise a `NotImplemented # Error` if we attempt to generate from a generation node that has # more than one model spec. Note that the check is done in `gen` and # not in the constructor to make `GenerationNode` mode convenient to # subclass. with self.assertRaises(NotImplementedError): generation_node.gen()
class TestGenerationNodeWithBestModelSelector(TestCase): @fast_botorch_optimize def setUp(self): self.branin_experiment = get_branin_experiment() sobol = Models.SOBOL(search_space=self.branin_experiment.search_space) sobol_run = sobol.gen(n=20) self.branin_experiment.new_batch_trial().add_generator_run( sobol_run ).run().mark_completed() data = self.branin_experiment.fetch_data() ms_gpei = ModelSpec(model_enum=Models.GPEI) ms_gpei.fit(experiment=self.branin_experiment, data=data) ms_gpkg = ModelSpec(model_enum=Models.GPKG) ms_gpkg.fit(experiment=self.branin_experiment, data=data) self.fitted_model_specs = [ms_gpei, ms_gpkg] self.model_selection_node = GenerationNode( model_specs=self.fitted_model_specs, best_model_selector=SingleDiagnosticBestModelSelector( diagnostic="Fisher exact test p", criterion=MetricAggregation.MEAN, metric_aggregation=DiagnosticCriterion.MIN, ), ) @fast_botorch_optimize def test_gen(self): self.model_selection_node.fit( experiment=self.branin_experiment, data=self.branin_experiment.lookup_data() ) # Check that with `ModelSelectionNode` generation from a node with # multiple model specs does not fail. gr = self.model_selection_node.gen(n=1, pending_observations={"branin": []}) # Currently, `ModelSelectionNode` should just pick the first model # spec as the one to generate from. # TODO[adamobeng]: Test correct behavior here when implemented. self.assertEqual(gr._model_key, "GPEI") def test_fixed_features_is_from_model_to_gen_from(self) -> None: self.model_selection_node.model_specs[0].fixed_features = ObservationFeatures( parameters={"x": 0} ) self.model_selection_node.model_specs[1].fixed_features = ObservationFeatures( parameters={"x": 1} ) self.assertEqual( self.model_selection_node.fixed_features, self.model_selection_node.model_spec_to_gen_from.fixed_features, )
def test_single_fixed_features(self) -> None: node = GenerationNode( model_specs=[ ModelSpec( model_enum=Models.GPEI, model_kwargs={}, model_gen_kwargs={ "n": 2, "fixed_features": ObservationFeatures(parameters={"x": 0}), }, ), ], ) self.assertEqual(node.fixed_features, ObservationFeatures(parameters={"x": 0}))
class TestGenerationNode(TestCase): def setUp(self): self.sobol_model_spec = ModelSpec( model_enum=Models.SOBOL, model_kwargs={"init_position": 3}, model_gen_kwargs={"some_gen_kwarg": "some_value"}, ) self.sobol_generation_node = GenerationNode(model_specs=[self.sobol_model_spec]) self.branin_experiment = get_branin_experiment(with_completed_trial=True) def test_init(self): self.assertEqual( self.sobol_generation_node.model_specs, [self.sobol_model_spec] ) def test_fit(self): dat = self.branin_experiment.lookup_data() with patch.object( self.sobol_model_spec, "fit", wraps=self.sobol_model_spec.fit ) as mock_model_spec_fit: self.sobol_generation_node.fit( experiment=self.branin_experiment, data=dat, ) mock_model_spec_fit.assert_called_with( experiment=self.branin_experiment, data=dat, search_space=None, optimization_config=None, ) def test_gen(self): dat = self.branin_experiment.lookup_data() self.sobol_generation_node.fit( experiment=self.branin_experiment, data=dat, ) with patch.object( self.sobol_model_spec, "gen", wraps=self.sobol_model_spec.gen ) as mock_model_spec_gen: gr = self.sobol_generation_node.gen( n=1, pending_observations={"branin": []} ) mock_model_spec_gen.assert_called_with(n=1, pending_observations={"branin": []}) self.assertEqual(gr._model_key, self.sobol_model_spec.model_key) self.assertEqual(gr._model_kwargs.get("init_position"), 3) def test_gen_validates_one_model_spec(self): generation_node = GenerationNode( model_specs=[self.sobol_model_spec, self.sobol_model_spec] ) # Base generation node can only handle one model spec at the moment # (this might change in the future), so it should raise a `NotImplemented # Error` if we attempt to generate from a generation node that has # more than one model spec. Note that the check is done in `gen` and # not in the constructor to make `GenerationNode` mode convenient to # subclass. with self.assertRaises(NotImplementedError): generation_node.gen() def test_properties(self): node = GenerationNode( model_specs=[ ModelSpec( model_enum=Models.GPEI, model_kwargs={}, model_gen_kwargs={ "n": 1, "fixed_features": ObservationFeatures( parameters={}, trial_index=0 ), }, ), ], ) dat = self.branin_experiment.lookup_data() node.fit( experiment=self.branin_experiment, data=dat, ) self.assertEqual(node.model_enum, node.model_specs[0].model_enum) self.assertEqual(node.model_kwargs, node.model_specs[0].model_kwargs) self.assertEqual(node.model_gen_kwargs, node.model_specs[0].model_gen_kwargs) self.assertEqual(node.model_cv_kwargs, node.model_specs[0].model_cv_kwargs) self.assertEqual(node.fixed_features, node.model_specs[0].fixed_features) self.assertEqual(node.cv_results, node.model_specs[0].cv_results) self.assertEqual(node.diagnostics, node.model_specs[0].diagnostics) def test_single_fixed_features(self) -> None: node = GenerationNode( model_specs=[ ModelSpec( model_enum=Models.GPEI, model_kwargs={}, model_gen_kwargs={ "n": 2, "fixed_features": ObservationFeatures(parameters={"x": 0}), }, ), ], ) self.assertEqual(node.fixed_features, ObservationFeatures(parameters={"x": 0})) def test_multiple_same_fixed_features(self) -> None: node = GenerationNode( model_specs=[ ModelSpec( model_enum=Models.GPEI, model_kwargs={}, model_gen_kwargs={ "n": 2, "fixed_features": ObservationFeatures(parameters={"x": 0}), }, ), ModelSpec( model_enum=Models.GPEI, model_kwargs={}, model_gen_kwargs={ "n": 3, "fixed_features": ObservationFeatures(parameters={"x": 0}), }, ), ], ) self.assertEqual(node.fixed_features, ObservationFeatures(parameters={"x": 0}))