Exemple #1
0
 def testGetLastPoint(self):
     generated_points = np.array([[1, 2, 3], [4, 5, 6]])
     RandomModelWithPoints = RandomModel(generated_points=generated_points)
     result = RandomModelWithPoints._get_last_point()
     expected = torch.tensor([[4], [5], [6]])
     comparison = result == expected
     self.assertEqual(comparison.any(), True)
Exemple #2
0
class RandomModelTest(TestCase):
    def setUp(self):
        self.random_model = RandomModel()

    def testRandomModelGenSamples(self):
        with self.assertRaises(NotImplementedError):
            self.random_model._gen_samples(n=1, tunable_d=1)

    def testRandomModelGenUnconstrained(self):
        with self.assertRaises(NotImplementedError):
            self.random_model._gen_unconstrained(
                n=1, d=2, tunable_feature_indices=np.array([]))

    def testConvertEqualityConstraints(self):
        fixed_features = {3: 0.7, 1: 0.5}
        d = 4
        C, c = self.random_model._convert_equality_constraints(
            d, fixed_features)
        c_expected = torch.tensor([[0.5], [0.7]], dtype=torch.double)
        C_expected = torch.tensor([[0, 1, 0, 0], [0, 0, 0, 1]],
                                  dtype=torch.double)
        c_comparison = c == c_expected
        C_comparison = C == C_expected
        self.assertEqual(c_comparison.any(), True)
        self.assertEqual(C_comparison.any(), True)
        self.assertEqual(
            self.random_model._convert_equality_constraints(d, None), None)

    def testConvertInequalityConstraints(self):
        A = np.array([[1, 2], [3, 4]])
        b = np.array([[5], [6]])
        A_result, b_result = self.random_model._convert_inequality_constraints(
            (A, b))
        A_expected = torch.tensor([[1, 2], [3, 4]], dtype=torch.double)
        b_expected = torch.tensor([[5], [6]], dtype=torch.double)
        A_comparison = A_result == A_expected
        b_comparison = b_result == b_expected
        self.assertEqual(A_comparison.any(), True)
        self.assertEqual(b_comparison.any(), True)
        self.assertEqual(
            self.random_model._convert_inequality_constraints(None), None)

    def testConvertBounds(self):
        bounds = [(1, 2), (3, 4), (5, 6)]
        bounds_result = self.random_model._convert_bounds(bounds)
        bounds_expected = torch.tensor([[1, 3, 5], [2, 4, 6]],
                                       dtype=torch.double)
        bounds_comparison = bounds_result == bounds_expected
        self.assertEqual(bounds_comparison.any(), True)
        self.assertEqual(self.random_model._convert_bounds(None), None)

    def testGetLastPoint(self):
        generated_points = np.array([[1, 2, 3], [4, 5, 6]])
        RandomModelWithPoints = RandomModel(generated_points=generated_points)
        result = RandomModelWithPoints._get_last_point()
        expected = torch.tensor([[4], [5], [6]])
        comparison = result == expected
        self.assertEqual(comparison.any(), True)
class RandomModelTest(TestCase):
    def setUp(self):
        self.random_model = RandomModel()

    def testRandomModelGenSamples(self):
        with self.assertRaises(NotImplementedError):
            self.random_model._gen_samples(n=1, tunable_d=1)

    def testRandomModelGenUnconstrained(self):
        with self.assertRaises(NotImplementedError):
            self.random_model._gen_unconstrained(
                n=1, d=2, tunable_feature_indices=np.array([]))
Exemple #4
0
    def testGen(self, mock_init, mock_gen):
        # Test with constraints
        modelbridge = RandomModelBridge()
        modelbridge.parameters = ["x", "y", "z"]
        modelbridge.transforms = OrderedDict()
        modelbridge.model = RandomModel()
        observation_features, weights, best_obsf, _ = modelbridge._gen(
            n=3,
            search_space=self.search_space,
            pending_observations={},
            fixed_features=ObservationFeatures({"z": 3.0}),
            optimization_config=None,
            model_gen_options=self.model_gen_options,
        )
        gen_args = mock_gen.mock_calls[0][2]
        self.assertEqual(gen_args["n"], 3)
        self.assertEqual(gen_args["bounds"], [(0.0, 1.0), (1.0, 2.0),
                                              (0.0, 5.0)])
        self.assertTrue(
            np.array_equal(
                gen_args["linear_constraints"][0],
                np.array([[1.0, -1, 0.0], [-1.0, 0.0, -1.0]]),
            ))
        self.assertTrue(
            np.array_equal(gen_args["linear_constraints"][1],
                           np.array([[0.0], [-3.5]])))
        self.assertEqual(gen_args["fixed_features"], {2: 3.0})
        self.assertEqual(gen_args["model_gen_options"], {"option": "yes"})
        self.assertEqual(observation_features[0].parameters, {
            "x": 1.0,
            "y": 2.0,
            "z": 3.0
        })
        self.assertEqual(observation_features[1].parameters, {
            "x": 3.0,
            "y": 4.0,
            "z": 3.0
        })
        self.assertTrue(np.array_equal(weights, np.array([1.0, 2.0])))

        # Test with no constraints, no fixed feature, no pending observations
        search_space = SearchSpace(self.parameters[:2])
        modelbridge.parameters = ["x", "y"]
        modelbridge._gen(
            n=3,
            search_space=search_space,
            pending_observations={},
            fixed_features=ObservationFeatures({}),
            optimization_config=None,
            model_gen_options=self.model_gen_options,
        )
        gen_args = mock_gen.mock_calls[1][2]
        self.assertEqual(gen_args["bounds"], [(0.0, 1.0), (1.0, 2.0)])
        self.assertIsNone(gen_args["linear_constraints"])
        self.assertIsNone(gen_args["fixed_features"])
Exemple #5
0
 def setUp(self):
     self.random_model = RandomModel()