Exemple #1
0
def plinear_regression(ffig_dpl, fdpl):
    dpl = Dipole(fdpl)
    layer = 'L5'
    t0 = 750.

    # dipole for the given layer, truncated
    # order matters here
    x_dpl = dpl.dpl[layer][(dpl.t > t0)]
    t = dpl.t[dpl.t > t0]

    # take the transpose (T) of a vector of the times and ones for each element
    A = np.vstack([t, np.ones(len(t))]).T

    # find the slope and the y-int of the line fit with least squares method (min. of Euclidean 2-norm)
    m, c = np.linalg.lstsq(A, x_dpl)[0]
    print(m, c)

    # plot me
    f = ac.FigStd()
    f.ax0.plot(t, x_dpl)
    f.ax0.hold(True)
    f.ax0.plot(t, m*t + c, 'r')

    # save over the original
    f.savepng(ffig_dpl)
    f.close()
Exemple #2
0
def pmaxpwr(file_name, results_list, fparam_list):
    f = ac.FigStd()
    f.ax0.hold(True)

    # instantiate lists for storing x and y data
    x_data = []
    y_data = []

    # plot points
    for result, fparam in zip(results_list, fparam_list):
        p = paramrw.read(fparam)[1]

        x_data.append(p['f_input_prox'])
        y_data.extend(result['freq_at_max'])

        f.ax0.plot(x_data[-1], y_data[-1], 'kx')

    # add trendline
    fit = np.polyfit(x_data, y_data, 1)
    fit_fn = np.poly1d(fit)

    f.ax0.plot(x_data, fit_fn(x_data), 'k-')

    # Axis stuff
    f.ax0.set_xlabel('Proximal/Distal Input Freq (Hz)')
    f.ax0.set_ylabel('Freq at which max avg power occurs (Hz)')

    f.save(file_name)
Exemple #3
0
def pspecpwr(file_name, results_list, fparam_list, key_types, error_vec=[]):
    # instantiate fig
    f = ac.FigStd()
    f.set_fontsize(18)

    # pspecpwr_ax is a plot kernel for specpwr plotting
    legend_list = pspecpwr_ax(f.ax0, results_list, fparam_list, key_types)

    # Add error bars if necessary
    if len(error_vec):
        # errors are only used with avg'ed data. There will be only one entry in results_list
        pyerrorbars_ax(f.ax0, results_list[0]['freq'],
                       results_list[0]['p_avg'], error_vec)

    # insert legend
    f.ax0.legend(legend_list, loc='upper right', prop={'size': 8})

    # axes labels
    f.ax0.set_xlabel('Freq (Hz)')
    f.ax0.set_ylabel('Avgerage Power (nAm^2)')

    # add title
    # f.set_title(fparam_list[0], key_types)

    f.savepng(file_name)
    # f.save(file_name)
    # f.saveeps(file_name)
    f.close()
Exemple #4
0
def pdipole_exp(ddata, ylim=[]):
    """ over ALL trials in ALL conditions in EACH experiment
    """
    # sim_prefix
    fprefix = ddata.sim_prefix

    # create the figure name
    fname_exp = '%s_dpl' % (fprefix)
    fname_exp_fig = os.path.join(ddata.dsim, fname_exp + '.png')

    # create one figure comparing across all
    N_expmt_groups = len(ddata.expmt_groups)
    f_exp = ac.FigDipoleExp(ddata.expmt_groups)

    # empty list for the aggregate dipole data
    dpl_exp = []

    # go through each expmt
    for expmt_group in ddata.expmt_groups:
        # create the filename
        dexp = ddata.dexpmt_dict[expmt_group]
        fname_short = '%s-%s-dpl' % (fprefix, expmt_group)
        fname_data = os.path.join(dexp, fname_short + '.txt')
        fname_fig = os.path.join(ddata.dfig[expmt_group]['figdpl'], fname_short + '.png')

        # grab the list of raw data dipoles and assoc params in this expmt
        dpl_list = ddata.file_match(expmt_group, 'rawdpl')
        param_list = ddata.file_match(expmt_group, 'param')

        for f_dpl, f_param in zip(dpl_list, param_list):
            dpl = Dipole(f_dpl)
            dpl.baseline_renormalize(f_param)
            # x_tmp = np.loadtxt(open(file, 'r'))

            # initialize and use x_dpl
            if f_dpl is dpl_list[0]:

                # assume time vec stays the same throughout
                t_vec = dpl.t
                x_dpl = dpl.dpl['agg']

            else:
                # guaranteed to exist after dpl_list[0]
                x_dpl += dpl.dpl['agg']

        # poor man's mean
        x_dpl /= len(dpl_list)

        # save this in a list to do comparison figure
        # order is same as ddata.expmt_groups
        dpl_exp.append(x_dpl)

        # write this data to the file
        with open(fname_data, 'w') as f:
            for t, x in zip(t_vec, x_dpl):
                f.write("%03.3f\t%5.4f\n" % (t, x))

        # create the plot I guess?
        f = ac.FigStd()
        f.ax0.plot(t_vec, x_dpl)

        if len(ylim):
            f.ax0.set_ylim(ylim)

        f.savepng(fname_fig)
        f.close()

    # plot the aggregate data using methods defined in FigDipoleExp()
    f_exp.plot(t_vec, dpl_exp)

    # attempt at setting titles
    for ax, expmt_group in zip(f_exp.ax, ddata.expmt_groups):
        ax.set_title(expmt_group)

    f_exp.savepng(fname_exp_fig)
    f_exp.close()
Exemple #5
0
def pdipole_evoked(dfig, f_dpl, f_spk, f_param, ylim=[]):
    """ for each individual simulation/trial
    """
    gid_dict, p_dict = paramrw.read(f_param)

    # get the spike dict from the files
    s_dict = spikefn.spikes_from_file(f_param, f_spk)
    s = s_dict.keys()
    s.sort()

    # create an empty dict 'spk_unique'
    spk_unique = dict.fromkeys([key for key in s_dict.keys() if key.startswith(('evprox', 'evdist'))])

    for key in spk_unique:
        spk_unique[key] = s_dict[key].unique_all(0)

    # draw vertical lines for each item in this

    # x_dipole is dipole data
    # x_dipole = np.loadtxt(open(f_dpl, 'r'))
    dpl = Dipole(f_dpl)

    # split to find file prefix
    file_prefix = f_dpl.split('/')[-1].split('.')[0]

    # # set xmin value
    # xmin = xlim[0] / p_dict['dt']

    # # set xmax value
    # if xlim[1] == 'tstop':
    #     xmax = p_dict['tstop'] / p_dict['dt']
    # else:
    #     xmax = xlim[1] / p_dict['dt']

    # these are the vectors for now, but this is going to change
    t_vec = dpl.t
    dp_total = dpl.dpl['agg']

    f = ac.FigStd()

    # hold on
    f.ax0.hold(True)

    f.ax0.plot(t_vec, dp_total)

    lines_spk = dict.fromkeys(spk_unique)

    print(spk_unique)

    # plot the lines
    for key in spk_unique:
        print(key, spk_unique[key])
        x_val = spk_unique[key][0]
        lines_spk[key] = plt.axvline(x=x_val, linewidth=0.5, color='r')

    # title_txt = [key + ': {:.2e}' % p_dict[key] for key in key_types['dynamic_keys']]
    title_txt = 'test'
    f.ax0.set_title(title_txt)

    if ylim:
        f.ax0.set_ylim(ylim)

    fig_name = os.path.join(dfig, file_prefix+'.png')

    plt.savefig(fig_name, dpi=300)
    f.close()
Exemple #6
0
def pdipole(f_dpl, dfig, plot_dict, f_param=None, key_types={}):
    """ single dipole file combination (incl. param file)
        this should be done with an axis input too
        two separate functions, a pdipole kernel function and a specific function for this simple plot
    """
    # dpl is an obj of Dipole() class
    dpl = Dipole(f_dpl)

    if f_param:
        dpl.baseline_renormalize(f_param)

    dpl.convert_fAm_to_nAm()

    # split to find file prefix
    file_prefix = f_dpl.split('/')[-1].split('.')[0]


    # parse xlim from plot_dict
    if plot_dict['xlim'] is None:
        xmin = dpl.t[0]
        xmax = dpl.t[-1]

    else:
        xmin, xmax = plot_dict['xlim']

        if xmin < 0.:
            xmin = 0.

        if xmax < 0.:
            xmax = self.f[-1]

    # # get xmin and xmax from the plot_dict
    # if plot_dict['xmin'] is None:
    #     xmin = 0.
    # else:
    #     xmin = plot_dict['xmin']

    # if plot_dict['xmax'] is None:
    #     xmax = p_dict['tstop']
    # else:
    #     xmax = plot_dict['xmax']

    # truncate them using logical indexing
    t_range = dpl.t[(dpl.t >= xmin) & (dpl.t <= xmax)]
    dpl_range = dpl.dpl['agg'][(dpl.t >= xmin) & (dpl.t <= xmax)]

    f = ac.FigStd()
    f.ax0.plot(t_range, dpl_range)

    # sorry about the parity between vars here and above with xmin/xmax
    if plot_dict['ylim'] is None:
    # if plot_dict['ymin'] is None or plot_dict['ymax'] is None:
        pass
    else:
        f.ax0.set_ylim(plot_dict['ylim'][0], plot_dict['ylim'][1])
        # f.ax0.set_ylim(plot_dict['ymin'], plot_dict['ymax'])

    # Title creation
    if f_param and key_types:
        # grabbing the p_dict from the f_param
        _, p_dict = paramrw.read(f_param)

        # useful for title strings
        title_str = ac.create_title(p_dict, key_types)
        f.f.suptitle(title_str)

    # create new fig name
    fig_name = os.path.join(dfig, file_prefix+'.png')

    # savefig
    plt.savefig(fig_name, dpi=300)
    f.close()